Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationThu, 24 Nov 2011 09:23:11 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Nov/24/t1322144830pf2cicz586n2f7t.htm/, Retrieved Fri, 01 Nov 2024 00:17:33 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=146856, Retrieved Fri, 01 Nov 2024 00:17:33 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact173
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Data Series] [data set] [2008-12-01 19:54:57] [b98453cac15ba1066b407e146608df68]
- RMPD    [Classical Decomposition] [compendium 8] [2011-11-24 14:23:11] [1b6261517283a6546869240081f8d68e] [Current]
- R P       [Classical Decomposition] [WS 8 ] [2011-11-24 15:00:38] [380049693c521f4999989215fb37aeca]
-  M          [Classical Decomposition] [WS8-3] [2011-11-29 19:45:41] [74be16979710d4c4e7c6647856088456]
-             [Classical Decomposition] [] [2011-12-01 07:56:19] [74be16979710d4c4e7c6647856088456]
- RMPD      [Multiple Regression] [WS 8 Q2] [2011-11-24 15:13:59] [380049693c521f4999989215fb37aeca]
- RMPD      [Multiple Regression] [WS 8 Q2] [2011-11-24 15:19:54] [380049693c521f4999989215fb37aeca]
- RM          [Multiple Regression] [WS 8 ] [2011-11-29 11:57:47] [74be16979710d4c4e7c6647856088456]
- RM          [Multiple Regression] [WS8-4] [2011-11-29 19:48:54] [74be16979710d4c4e7c6647856088456]
-   PD        [Multiple Regression] [] [2011-11-29 22:53:24] [0748461f029d231b348d2f525a63e360]
- RMPD        [Exponential Smoothing] [] [2011-11-29 23:13:27] [0748461f029d231b348d2f525a63e360]
- R           [Multiple Regression] [] [2011-12-01 07:59:19] [74be16979710d4c4e7c6647856088456]
- RMPD      [Exponential Smoothing] [WS 8 Q3] [2011-11-24 15:31:44] [380049693c521f4999989215fb37aeca]
- R           [Exponential Smoothing] [compendium 8] [2011-11-29 12:04:52] [74be16979710d4c4e7c6647856088456]
- RM          [Exponential Smoothing] [WS8-5] [2011-11-29 19:57:05] [74be16979710d4c4e7c6647856088456]
- R           [Exponential Smoothing] [] [2011-12-01 08:01:09] [74be16979710d4c4e7c6647856088456]
- R  D        [Exponential Smoothing] [] [2011-12-16 15:03:01] [74be16979710d4c4e7c6647856088456]
- R         [Classical Decomposition] [compendium 8] [2011-11-29 11:42:46] [74be16979710d4c4e7c6647856088456]
- RM        [Classical Decomposition] [WS8-2] [2011-11-29 19:23:39] [74be16979710d4c4e7c6647856088456]
- R         [Classical Decomposition] [] [2011-12-01 07:53:32] [74be16979710d4c4e7c6647856088456]
Feedback Forum

Post a new message
Dataseries X:
135094
135411
135698
135880
135891
135971
136173
136358
136514
136506
136711
136891
137094
137182
137400
137479
137620
137687
137638
137612
137681
137772
137899
137983
137996
137913
137841
137656
137423
137245
137014
136747
136313
135804
135002
134383
133563
132837
132041
131381
130995
130493
130193
129962
129726
129505
129450
129320
129281
129246
129438
129715
130173
129981
129932
129873
129844
130015
130108
130260




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=146856&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=146856&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=146856&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
1135094NANA-24.9045138888829NA
2135411NANA-81.3420138888866NA
3135698NANA-58.8107638888902NA
4135880NANA-43.9670138888975NA
5135891NANA87.4288194444492NA
6135971NANA24.0329861111207NA
7136173136164.157986111136174.833333333-10.67534722222238.84201388890506
8136358136361.303819444136331.95833333329.3454861111171-3.30381944443798
9136514136524.189236111136476.66666666747.5225694444346-10.189236111124
10136506136629.407986111136614.20833333315.1996527777668-123.407986111124
11136711136760.605902778136752.8757.73090277777768-49.605902777781
12136891136904.855902778136896.4166666678.43923611111344-13.855902777781
13137094137004.053819444137028.958333333-24.904513888882989.946180555562
14137182137060.907986111137142.25-81.3420138888866121.092013888876
15137400137184.314236111137243.125-58.8107638888902215.685763888876
16137479137300.532986111137344.5-43.9670138888975178.467013888905
17137620137534.178819444137446.7587.428819444449285.8211805555911
18137687137565.782986111137541.7524.0329861111207121.217013888905
19137638137614.157986111137624.833333333-10.675347222222323.8420138889051
20137612137722.220486111137692.87529.3454861111171-110.220486111095
21137681137789.230902778137741.70833333347.5225694444346-108.230902777781
22137772137782.657986111137767.45833333315.1996527777668-10.657986111124
23137899137774.355902778137766.6257.73090277777768124.644097222219
24137983137748.4392361111377408.43923611111344234.560763888876
25137996137670.678819444137695.583333333-24.9045138888829325.321180555562
26137913137552.199652778137633.541666667-81.3420138888866360.800347222219
27137841137481.689236111137540.5-58.8107638888902359.310763888876
28137656137357.532986111137401.5-43.9670138888975298.467013888905
29137423137286.220486111137198.79166666787.4288194444492136.779513888905
30137245136952.116319444136928.08333333324.0329861111207292.883680555562
31137014136582.699652778136593.375-10.6753472222223431.300347222219
32136747136226.512152778136197.16666666729.3454861111171520.487847222219
33136313135791.52256944413574447.5225694444346521.477430555591
34135804135256.074652778135240.87515.1996527777668547.925347222219
35135002134719.314236111134711.5833333337.73090277777768282.685763888905
36134383134170.855902778134162.4166666678.43923611111344212.144097222219
37133563133571.970486111133596.875-24.9045138888829-8.97048611112405
38132837132948.616319444133029.958333333-81.3420138888866-111.616319444438
39132041132413.980902778132472.791666667-58.8107638888902-372.980902777781
40131381131891.907986111131935.875-43.9670138888975-510.907986111095
41130995131529.512152778131442.08333333387.4288194444492-534.512152777796
42130493131023.824652778130999.79166666724.0329861111207-530.824652777796
43130193130599.741319444130610.416666667-10.6753472222223-406.741319444467
44129962130311.720486111130282.37529.3454861111171-349.720486111139
45129726130071.814236111130024.29166666747.5225694444346-345.814236111124
46129505129861.616319444129846.41666666715.1996527777668-356.616319444438
47129450129750.480902778129742.757.73090277777768-300.480902777781
48129320129695.605902778129687.1666666678.43923611111344-375.605902777766
49129281129630.053819444129654.958333333-24.9045138888829-349.053819444453
50129246129559.032986111129640.375-81.3420138888866-313.032986111109
51129438129582.772569444129641.583333333-58.8107638888902-144.772569444438
52129715129623.782986111129667.75-43.967013888897591.217013888876
53130173129803.845486111129716.41666666787.4288194444492369.154513888891
54129981129807.03298611112978324.0329861111207173.967013888891
55129932NANA-10.6753472222223NA
56129873NANA29.3454861111171NA
57129844NANA47.5225694444346NA
58130015NANA15.1996527777668NA
59130108NANA7.73090277777768NA
60130260NANA8.43923611111344NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 135094 & NA & NA & -24.9045138888829 & NA \tabularnewline
2 & 135411 & NA & NA & -81.3420138888866 & NA \tabularnewline
3 & 135698 & NA & NA & -58.8107638888902 & NA \tabularnewline
4 & 135880 & NA & NA & -43.9670138888975 & NA \tabularnewline
5 & 135891 & NA & NA & 87.4288194444492 & NA \tabularnewline
6 & 135971 & NA & NA & 24.0329861111207 & NA \tabularnewline
7 & 136173 & 136164.157986111 & 136174.833333333 & -10.6753472222223 & 8.84201388890506 \tabularnewline
8 & 136358 & 136361.303819444 & 136331.958333333 & 29.3454861111171 & -3.30381944443798 \tabularnewline
9 & 136514 & 136524.189236111 & 136476.666666667 & 47.5225694444346 & -10.189236111124 \tabularnewline
10 & 136506 & 136629.407986111 & 136614.208333333 & 15.1996527777668 & -123.407986111124 \tabularnewline
11 & 136711 & 136760.605902778 & 136752.875 & 7.73090277777768 & -49.605902777781 \tabularnewline
12 & 136891 & 136904.855902778 & 136896.416666667 & 8.43923611111344 & -13.855902777781 \tabularnewline
13 & 137094 & 137004.053819444 & 137028.958333333 & -24.9045138888829 & 89.946180555562 \tabularnewline
14 & 137182 & 137060.907986111 & 137142.25 & -81.3420138888866 & 121.092013888876 \tabularnewline
15 & 137400 & 137184.314236111 & 137243.125 & -58.8107638888902 & 215.685763888876 \tabularnewline
16 & 137479 & 137300.532986111 & 137344.5 & -43.9670138888975 & 178.467013888905 \tabularnewline
17 & 137620 & 137534.178819444 & 137446.75 & 87.4288194444492 & 85.8211805555911 \tabularnewline
18 & 137687 & 137565.782986111 & 137541.75 & 24.0329861111207 & 121.217013888905 \tabularnewline
19 & 137638 & 137614.157986111 & 137624.833333333 & -10.6753472222223 & 23.8420138889051 \tabularnewline
20 & 137612 & 137722.220486111 & 137692.875 & 29.3454861111171 & -110.220486111095 \tabularnewline
21 & 137681 & 137789.230902778 & 137741.708333333 & 47.5225694444346 & -108.230902777781 \tabularnewline
22 & 137772 & 137782.657986111 & 137767.458333333 & 15.1996527777668 & -10.657986111124 \tabularnewline
23 & 137899 & 137774.355902778 & 137766.625 & 7.73090277777768 & 124.644097222219 \tabularnewline
24 & 137983 & 137748.439236111 & 137740 & 8.43923611111344 & 234.560763888876 \tabularnewline
25 & 137996 & 137670.678819444 & 137695.583333333 & -24.9045138888829 & 325.321180555562 \tabularnewline
26 & 137913 & 137552.199652778 & 137633.541666667 & -81.3420138888866 & 360.800347222219 \tabularnewline
27 & 137841 & 137481.689236111 & 137540.5 & -58.8107638888902 & 359.310763888876 \tabularnewline
28 & 137656 & 137357.532986111 & 137401.5 & -43.9670138888975 & 298.467013888905 \tabularnewline
29 & 137423 & 137286.220486111 & 137198.791666667 & 87.4288194444492 & 136.779513888905 \tabularnewline
30 & 137245 & 136952.116319444 & 136928.083333333 & 24.0329861111207 & 292.883680555562 \tabularnewline
31 & 137014 & 136582.699652778 & 136593.375 & -10.6753472222223 & 431.300347222219 \tabularnewline
32 & 136747 & 136226.512152778 & 136197.166666667 & 29.3454861111171 & 520.487847222219 \tabularnewline
33 & 136313 & 135791.522569444 & 135744 & 47.5225694444346 & 521.477430555591 \tabularnewline
34 & 135804 & 135256.074652778 & 135240.875 & 15.1996527777668 & 547.925347222219 \tabularnewline
35 & 135002 & 134719.314236111 & 134711.583333333 & 7.73090277777768 & 282.685763888905 \tabularnewline
36 & 134383 & 134170.855902778 & 134162.416666667 & 8.43923611111344 & 212.144097222219 \tabularnewline
37 & 133563 & 133571.970486111 & 133596.875 & -24.9045138888829 & -8.97048611112405 \tabularnewline
38 & 132837 & 132948.616319444 & 133029.958333333 & -81.3420138888866 & -111.616319444438 \tabularnewline
39 & 132041 & 132413.980902778 & 132472.791666667 & -58.8107638888902 & -372.980902777781 \tabularnewline
40 & 131381 & 131891.907986111 & 131935.875 & -43.9670138888975 & -510.907986111095 \tabularnewline
41 & 130995 & 131529.512152778 & 131442.083333333 & 87.4288194444492 & -534.512152777796 \tabularnewline
42 & 130493 & 131023.824652778 & 130999.791666667 & 24.0329861111207 & -530.824652777796 \tabularnewline
43 & 130193 & 130599.741319444 & 130610.416666667 & -10.6753472222223 & -406.741319444467 \tabularnewline
44 & 129962 & 130311.720486111 & 130282.375 & 29.3454861111171 & -349.720486111139 \tabularnewline
45 & 129726 & 130071.814236111 & 130024.291666667 & 47.5225694444346 & -345.814236111124 \tabularnewline
46 & 129505 & 129861.616319444 & 129846.416666667 & 15.1996527777668 & -356.616319444438 \tabularnewline
47 & 129450 & 129750.480902778 & 129742.75 & 7.73090277777768 & -300.480902777781 \tabularnewline
48 & 129320 & 129695.605902778 & 129687.166666667 & 8.43923611111344 & -375.605902777766 \tabularnewline
49 & 129281 & 129630.053819444 & 129654.958333333 & -24.9045138888829 & -349.053819444453 \tabularnewline
50 & 129246 & 129559.032986111 & 129640.375 & -81.3420138888866 & -313.032986111109 \tabularnewline
51 & 129438 & 129582.772569444 & 129641.583333333 & -58.8107638888902 & -144.772569444438 \tabularnewline
52 & 129715 & 129623.782986111 & 129667.75 & -43.9670138888975 & 91.217013888876 \tabularnewline
53 & 130173 & 129803.845486111 & 129716.416666667 & 87.4288194444492 & 369.154513888891 \tabularnewline
54 & 129981 & 129807.032986111 & 129783 & 24.0329861111207 & 173.967013888891 \tabularnewline
55 & 129932 & NA & NA & -10.6753472222223 & NA \tabularnewline
56 & 129873 & NA & NA & 29.3454861111171 & NA \tabularnewline
57 & 129844 & NA & NA & 47.5225694444346 & NA \tabularnewline
58 & 130015 & NA & NA & 15.1996527777668 & NA \tabularnewline
59 & 130108 & NA & NA & 7.73090277777768 & NA \tabularnewline
60 & 130260 & NA & NA & 8.43923611111344 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=146856&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]135094[/C][C]NA[/C][C]NA[/C][C]-24.9045138888829[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]135411[/C][C]NA[/C][C]NA[/C][C]-81.3420138888866[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]135698[/C][C]NA[/C][C]NA[/C][C]-58.8107638888902[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]135880[/C][C]NA[/C][C]NA[/C][C]-43.9670138888975[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]135891[/C][C]NA[/C][C]NA[/C][C]87.4288194444492[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]135971[/C][C]NA[/C][C]NA[/C][C]24.0329861111207[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]136173[/C][C]136164.157986111[/C][C]136174.833333333[/C][C]-10.6753472222223[/C][C]8.84201388890506[/C][/ROW]
[ROW][C]8[/C][C]136358[/C][C]136361.303819444[/C][C]136331.958333333[/C][C]29.3454861111171[/C][C]-3.30381944443798[/C][/ROW]
[ROW][C]9[/C][C]136514[/C][C]136524.189236111[/C][C]136476.666666667[/C][C]47.5225694444346[/C][C]-10.189236111124[/C][/ROW]
[ROW][C]10[/C][C]136506[/C][C]136629.407986111[/C][C]136614.208333333[/C][C]15.1996527777668[/C][C]-123.407986111124[/C][/ROW]
[ROW][C]11[/C][C]136711[/C][C]136760.605902778[/C][C]136752.875[/C][C]7.73090277777768[/C][C]-49.605902777781[/C][/ROW]
[ROW][C]12[/C][C]136891[/C][C]136904.855902778[/C][C]136896.416666667[/C][C]8.43923611111344[/C][C]-13.855902777781[/C][/ROW]
[ROW][C]13[/C][C]137094[/C][C]137004.053819444[/C][C]137028.958333333[/C][C]-24.9045138888829[/C][C]89.946180555562[/C][/ROW]
[ROW][C]14[/C][C]137182[/C][C]137060.907986111[/C][C]137142.25[/C][C]-81.3420138888866[/C][C]121.092013888876[/C][/ROW]
[ROW][C]15[/C][C]137400[/C][C]137184.314236111[/C][C]137243.125[/C][C]-58.8107638888902[/C][C]215.685763888876[/C][/ROW]
[ROW][C]16[/C][C]137479[/C][C]137300.532986111[/C][C]137344.5[/C][C]-43.9670138888975[/C][C]178.467013888905[/C][/ROW]
[ROW][C]17[/C][C]137620[/C][C]137534.178819444[/C][C]137446.75[/C][C]87.4288194444492[/C][C]85.8211805555911[/C][/ROW]
[ROW][C]18[/C][C]137687[/C][C]137565.782986111[/C][C]137541.75[/C][C]24.0329861111207[/C][C]121.217013888905[/C][/ROW]
[ROW][C]19[/C][C]137638[/C][C]137614.157986111[/C][C]137624.833333333[/C][C]-10.6753472222223[/C][C]23.8420138889051[/C][/ROW]
[ROW][C]20[/C][C]137612[/C][C]137722.220486111[/C][C]137692.875[/C][C]29.3454861111171[/C][C]-110.220486111095[/C][/ROW]
[ROW][C]21[/C][C]137681[/C][C]137789.230902778[/C][C]137741.708333333[/C][C]47.5225694444346[/C][C]-108.230902777781[/C][/ROW]
[ROW][C]22[/C][C]137772[/C][C]137782.657986111[/C][C]137767.458333333[/C][C]15.1996527777668[/C][C]-10.657986111124[/C][/ROW]
[ROW][C]23[/C][C]137899[/C][C]137774.355902778[/C][C]137766.625[/C][C]7.73090277777768[/C][C]124.644097222219[/C][/ROW]
[ROW][C]24[/C][C]137983[/C][C]137748.439236111[/C][C]137740[/C][C]8.43923611111344[/C][C]234.560763888876[/C][/ROW]
[ROW][C]25[/C][C]137996[/C][C]137670.678819444[/C][C]137695.583333333[/C][C]-24.9045138888829[/C][C]325.321180555562[/C][/ROW]
[ROW][C]26[/C][C]137913[/C][C]137552.199652778[/C][C]137633.541666667[/C][C]-81.3420138888866[/C][C]360.800347222219[/C][/ROW]
[ROW][C]27[/C][C]137841[/C][C]137481.689236111[/C][C]137540.5[/C][C]-58.8107638888902[/C][C]359.310763888876[/C][/ROW]
[ROW][C]28[/C][C]137656[/C][C]137357.532986111[/C][C]137401.5[/C][C]-43.9670138888975[/C][C]298.467013888905[/C][/ROW]
[ROW][C]29[/C][C]137423[/C][C]137286.220486111[/C][C]137198.791666667[/C][C]87.4288194444492[/C][C]136.779513888905[/C][/ROW]
[ROW][C]30[/C][C]137245[/C][C]136952.116319444[/C][C]136928.083333333[/C][C]24.0329861111207[/C][C]292.883680555562[/C][/ROW]
[ROW][C]31[/C][C]137014[/C][C]136582.699652778[/C][C]136593.375[/C][C]-10.6753472222223[/C][C]431.300347222219[/C][/ROW]
[ROW][C]32[/C][C]136747[/C][C]136226.512152778[/C][C]136197.166666667[/C][C]29.3454861111171[/C][C]520.487847222219[/C][/ROW]
[ROW][C]33[/C][C]136313[/C][C]135791.522569444[/C][C]135744[/C][C]47.5225694444346[/C][C]521.477430555591[/C][/ROW]
[ROW][C]34[/C][C]135804[/C][C]135256.074652778[/C][C]135240.875[/C][C]15.1996527777668[/C][C]547.925347222219[/C][/ROW]
[ROW][C]35[/C][C]135002[/C][C]134719.314236111[/C][C]134711.583333333[/C][C]7.73090277777768[/C][C]282.685763888905[/C][/ROW]
[ROW][C]36[/C][C]134383[/C][C]134170.855902778[/C][C]134162.416666667[/C][C]8.43923611111344[/C][C]212.144097222219[/C][/ROW]
[ROW][C]37[/C][C]133563[/C][C]133571.970486111[/C][C]133596.875[/C][C]-24.9045138888829[/C][C]-8.97048611112405[/C][/ROW]
[ROW][C]38[/C][C]132837[/C][C]132948.616319444[/C][C]133029.958333333[/C][C]-81.3420138888866[/C][C]-111.616319444438[/C][/ROW]
[ROW][C]39[/C][C]132041[/C][C]132413.980902778[/C][C]132472.791666667[/C][C]-58.8107638888902[/C][C]-372.980902777781[/C][/ROW]
[ROW][C]40[/C][C]131381[/C][C]131891.907986111[/C][C]131935.875[/C][C]-43.9670138888975[/C][C]-510.907986111095[/C][/ROW]
[ROW][C]41[/C][C]130995[/C][C]131529.512152778[/C][C]131442.083333333[/C][C]87.4288194444492[/C][C]-534.512152777796[/C][/ROW]
[ROW][C]42[/C][C]130493[/C][C]131023.824652778[/C][C]130999.791666667[/C][C]24.0329861111207[/C][C]-530.824652777796[/C][/ROW]
[ROW][C]43[/C][C]130193[/C][C]130599.741319444[/C][C]130610.416666667[/C][C]-10.6753472222223[/C][C]-406.741319444467[/C][/ROW]
[ROW][C]44[/C][C]129962[/C][C]130311.720486111[/C][C]130282.375[/C][C]29.3454861111171[/C][C]-349.720486111139[/C][/ROW]
[ROW][C]45[/C][C]129726[/C][C]130071.814236111[/C][C]130024.291666667[/C][C]47.5225694444346[/C][C]-345.814236111124[/C][/ROW]
[ROW][C]46[/C][C]129505[/C][C]129861.616319444[/C][C]129846.416666667[/C][C]15.1996527777668[/C][C]-356.616319444438[/C][/ROW]
[ROW][C]47[/C][C]129450[/C][C]129750.480902778[/C][C]129742.75[/C][C]7.73090277777768[/C][C]-300.480902777781[/C][/ROW]
[ROW][C]48[/C][C]129320[/C][C]129695.605902778[/C][C]129687.166666667[/C][C]8.43923611111344[/C][C]-375.605902777766[/C][/ROW]
[ROW][C]49[/C][C]129281[/C][C]129630.053819444[/C][C]129654.958333333[/C][C]-24.9045138888829[/C][C]-349.053819444453[/C][/ROW]
[ROW][C]50[/C][C]129246[/C][C]129559.032986111[/C][C]129640.375[/C][C]-81.3420138888866[/C][C]-313.032986111109[/C][/ROW]
[ROW][C]51[/C][C]129438[/C][C]129582.772569444[/C][C]129641.583333333[/C][C]-58.8107638888902[/C][C]-144.772569444438[/C][/ROW]
[ROW][C]52[/C][C]129715[/C][C]129623.782986111[/C][C]129667.75[/C][C]-43.9670138888975[/C][C]91.217013888876[/C][/ROW]
[ROW][C]53[/C][C]130173[/C][C]129803.845486111[/C][C]129716.416666667[/C][C]87.4288194444492[/C][C]369.154513888891[/C][/ROW]
[ROW][C]54[/C][C]129981[/C][C]129807.032986111[/C][C]129783[/C][C]24.0329861111207[/C][C]173.967013888891[/C][/ROW]
[ROW][C]55[/C][C]129932[/C][C]NA[/C][C]NA[/C][C]-10.6753472222223[/C][C]NA[/C][/ROW]
[ROW][C]56[/C][C]129873[/C][C]NA[/C][C]NA[/C][C]29.3454861111171[/C][C]NA[/C][/ROW]
[ROW][C]57[/C][C]129844[/C][C]NA[/C][C]NA[/C][C]47.5225694444346[/C][C]NA[/C][/ROW]
[ROW][C]58[/C][C]130015[/C][C]NA[/C][C]NA[/C][C]15.1996527777668[/C][C]NA[/C][/ROW]
[ROW][C]59[/C][C]130108[/C][C]NA[/C][C]NA[/C][C]7.73090277777768[/C][C]NA[/C][/ROW]
[ROW][C]60[/C][C]130260[/C][C]NA[/C][C]NA[/C][C]8.43923611111344[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=146856&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=146856&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
1135094NANA-24.9045138888829NA
2135411NANA-81.3420138888866NA
3135698NANA-58.8107638888902NA
4135880NANA-43.9670138888975NA
5135891NANA87.4288194444492NA
6135971NANA24.0329861111207NA
7136173136164.157986111136174.833333333-10.67534722222238.84201388890506
8136358136361.303819444136331.95833333329.3454861111171-3.30381944443798
9136514136524.189236111136476.66666666747.5225694444346-10.189236111124
10136506136629.407986111136614.20833333315.1996527777668-123.407986111124
11136711136760.605902778136752.8757.73090277777768-49.605902777781
12136891136904.855902778136896.4166666678.43923611111344-13.855902777781
13137094137004.053819444137028.958333333-24.904513888882989.946180555562
14137182137060.907986111137142.25-81.3420138888866121.092013888876
15137400137184.314236111137243.125-58.8107638888902215.685763888876
16137479137300.532986111137344.5-43.9670138888975178.467013888905
17137620137534.178819444137446.7587.428819444449285.8211805555911
18137687137565.782986111137541.7524.0329861111207121.217013888905
19137638137614.157986111137624.833333333-10.675347222222323.8420138889051
20137612137722.220486111137692.87529.3454861111171-110.220486111095
21137681137789.230902778137741.70833333347.5225694444346-108.230902777781
22137772137782.657986111137767.45833333315.1996527777668-10.657986111124
23137899137774.355902778137766.6257.73090277777768124.644097222219
24137983137748.4392361111377408.43923611111344234.560763888876
25137996137670.678819444137695.583333333-24.9045138888829325.321180555562
26137913137552.199652778137633.541666667-81.3420138888866360.800347222219
27137841137481.689236111137540.5-58.8107638888902359.310763888876
28137656137357.532986111137401.5-43.9670138888975298.467013888905
29137423137286.220486111137198.79166666787.4288194444492136.779513888905
30137245136952.116319444136928.08333333324.0329861111207292.883680555562
31137014136582.699652778136593.375-10.6753472222223431.300347222219
32136747136226.512152778136197.16666666729.3454861111171520.487847222219
33136313135791.52256944413574447.5225694444346521.477430555591
34135804135256.074652778135240.87515.1996527777668547.925347222219
35135002134719.314236111134711.5833333337.73090277777768282.685763888905
36134383134170.855902778134162.4166666678.43923611111344212.144097222219
37133563133571.970486111133596.875-24.9045138888829-8.97048611112405
38132837132948.616319444133029.958333333-81.3420138888866-111.616319444438
39132041132413.980902778132472.791666667-58.8107638888902-372.980902777781
40131381131891.907986111131935.875-43.9670138888975-510.907986111095
41130995131529.512152778131442.08333333387.4288194444492-534.512152777796
42130493131023.824652778130999.79166666724.0329861111207-530.824652777796
43130193130599.741319444130610.416666667-10.6753472222223-406.741319444467
44129962130311.720486111130282.37529.3454861111171-349.720486111139
45129726130071.814236111130024.29166666747.5225694444346-345.814236111124
46129505129861.616319444129846.41666666715.1996527777668-356.616319444438
47129450129750.480902778129742.757.73090277777768-300.480902777781
48129320129695.605902778129687.1666666678.43923611111344-375.605902777766
49129281129630.053819444129654.958333333-24.9045138888829-349.053819444453
50129246129559.032986111129640.375-81.3420138888866-313.032986111109
51129438129582.772569444129641.583333333-58.8107638888902-144.772569444438
52129715129623.782986111129667.75-43.967013888897591.217013888876
53130173129803.845486111129716.41666666787.4288194444492369.154513888891
54129981129807.03298611112978324.0329861111207173.967013888891
55129932NANA-10.6753472222223NA
56129873NANA29.3454861111171NA
57129844NANA47.5225694444346NA
58130015NANA15.1996527777668NA
59130108NANA7.73090277777768NA
60130260NANA8.43923611111344NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,m$trend[i]+m$seasonal[i]) else a<-table.element(a,m$trend[i]*m$seasonal[i])
a<-table.element(a,m$trend[i])
a<-table.element(a,m$seasonal[i])
a<-table.element(a,m$random[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')