Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_smp.wasp
Title produced by softwareStandard Deviation-Mean Plot
Date of computationWed, 16 Dec 2009 05:46:02 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Dec/16/t1260967624m0yd099bwz9k6u8.htm/, Retrieved Sat, 21 Dec 2024 13:56:04 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=68283, Retrieved Sat, 21 Dec 2024 13:56:04 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact196
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Explorative Data Analysis] [Run Sequence gebo...] [2008-12-12 13:32:37] [76963dc1903f0f612b6153510a3818cf]
- R  D  [Univariate Explorative Data Analysis] [Run Sequence gebo...] [2008-12-17 12:14:40] [76963dc1903f0f612b6153510a3818cf]
-         [Univariate Explorative Data Analysis] [Run Sequence Plot...] [2008-12-22 18:19:51] [1ce0d16c8f4225c977b42c8fa93bc163]
- RMP       [Standard Deviation-Mean Plot] [Identifying Integ...] [2009-11-22 12:50:05] [b98453cac15ba1066b407e146608df68]
- R  D        [Standard Deviation-Mean Plot] [] [2009-11-24 13:08:08] [3445d50c581a74ea3ff7b84cc82fcfeb]
-    D            [Standard Deviation-Mean Plot] [SMP] [2009-12-16 12:46:02] [d1818fb1d9a1b0f34f8553ada228d3d5] [Current]
Feedback Forum

Post a new message
Dataseries X:
107.11
107.57
107.81
108.75
109.43
109.62
109.54
109.53
109.84
109.67
109.79
109.56
110.22
110.40
110.69
110.72
110.89
110.58
110.94
110.91
111.22
111.09
111.00
111.06
111.55
112.32
112.64
112.36
112.04
112.37
112.59
112.89
113.22
112.85
113.06
112.99
113.32
113.74
113.91
114.52
114.96
114.91
115.30
115.44
115.52
116.08
115.94
115.56
115.88
116.66
117.41
117.68
117.85
118.21
118.92
119.03
119.17
118.95
118.92
118.90




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=68283&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=68283&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=68283&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
1109.0183333333330.9688590603322472.73000000000000
2110.810.2969542358374741
3112.5733333333330.4760506721182551.67000000000000
4114.9333333333330.8894567630488492.76000000000001
5118.1316666666671.063192733176253.29000000000001

\begin{tabular}{lllllllll}
\hline
Standard Deviation-Mean Plot \tabularnewline
Section & Mean & Standard Deviation & Range \tabularnewline
1 & 109.018333333333 & 0.968859060332247 & 2.73000000000000 \tabularnewline
2 & 110.81 & 0.296954235837474 & 1 \tabularnewline
3 & 112.573333333333 & 0.476050672118255 & 1.67000000000000 \tabularnewline
4 & 114.933333333333 & 0.889456763048849 & 2.76000000000001 \tabularnewline
5 & 118.131666666667 & 1.06319273317625 & 3.29000000000001 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=68283&T=1

[TABLE]
[ROW][C]Standard Deviation-Mean Plot[/C][/ROW]
[ROW][C]Section[/C][C]Mean[/C][C]Standard Deviation[/C][C]Range[/C][/ROW]
[ROW][C]1[/C][C]109.018333333333[/C][C]0.968859060332247[/C][C]2.73000000000000[/C][/ROW]
[ROW][C]2[/C][C]110.81[/C][C]0.296954235837474[/C][C]1[/C][/ROW]
[ROW][C]3[/C][C]112.573333333333[/C][C]0.476050672118255[/C][C]1.67000000000000[/C][/ROW]
[ROW][C]4[/C][C]114.933333333333[/C][C]0.889456763048849[/C][C]2.76000000000001[/C][/ROW]
[ROW][C]5[/C][C]118.131666666667[/C][C]1.06319273317625[/C][C]3.29000000000001[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=68283&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=68283&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
1109.0183333333330.9688590603322472.73000000000000
2110.810.2969542358374741
3112.5733333333330.4760506721182551.67000000000000
4114.9333333333330.8894567630488492.76000000000001
5118.1316666666671.063192733176253.29000000000001







Regression: S.E.(k) = alpha + beta * Mean(k)
alpha-3.9743402120491
beta0.0416756918028034
S.D.0.0483563167524001
T-STAT0.861845868373235
p-value0.452154987702556

\begin{tabular}{lllllllll}
\hline
Regression: S.E.(k) = alpha + beta * Mean(k) \tabularnewline
alpha & -3.9743402120491 \tabularnewline
beta & 0.0416756918028034 \tabularnewline
S.D. & 0.0483563167524001 \tabularnewline
T-STAT & 0.861845868373235 \tabularnewline
p-value & 0.452154987702556 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=68283&T=2

[TABLE]
[ROW][C]Regression: S.E.(k) = alpha + beta * Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]-3.9743402120491[/C][/ROW]
[ROW][C]beta[/C][C]0.0416756918028034[/C][/ROW]
[ROW][C]S.D.[/C][C]0.0483563167524001[/C][/ROW]
[ROW][C]T-STAT[/C][C]0.861845868373235[/C][/ROW]
[ROW][C]p-value[/C][C]0.452154987702556[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=68283&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=68283&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: S.E.(k) = alpha + beta * Mean(k)
alpha-3.9743402120491
beta0.0416756918028034
S.D.0.0483563167524001
T-STAT0.861845868373235
p-value0.452154987702556







Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha-35.5592354416771
beta7.4348151613314
S.D.9.14844900637546
T-STAT0.812685861412153
p-value0.47589980832091
Lambda-6.4348151613314

\begin{tabular}{lllllllll}
\hline
Regression: ln S.E.(k) = alpha + beta * ln Mean(k) \tabularnewline
alpha & -35.5592354416771 \tabularnewline
beta & 7.4348151613314 \tabularnewline
S.D. & 9.14844900637546 \tabularnewline
T-STAT & 0.812685861412153 \tabularnewline
p-value & 0.47589980832091 \tabularnewline
Lambda & -6.4348151613314 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=68283&T=3

[TABLE]
[ROW][C]Regression: ln S.E.(k) = alpha + beta * ln Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]-35.5592354416771[/C][/ROW]
[ROW][C]beta[/C][C]7.4348151613314[/C][/ROW]
[ROW][C]S.D.[/C][C]9.14844900637546[/C][/ROW]
[ROW][C]T-STAT[/C][C]0.812685861412153[/C][/ROW]
[ROW][C]p-value[/C][C]0.47589980832091[/C][/ROW]
[ROW][C]Lambda[/C][C]-6.4348151613314[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=68283&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=68283&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha-35.5592354416771
beta7.4348151613314
S.D.9.14844900637546
T-STAT0.812685861412153
p-value0.47589980832091
Lambda-6.4348151613314



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
(n <- length(x))
(np <- floor(n / par1))
arr <- array(NA,dim=c(par1,np))
j <- 0
k <- 1
for (i in 1:(np*par1))
{
j = j + 1
arr[j,k] <- x[i]
if (j == par1) {
j = 0
k=k+1
}
}
arr
arr.mean <- array(NA,dim=np)
arr.sd <- array(NA,dim=np)
arr.range <- array(NA,dim=np)
for (j in 1:np)
{
arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE)
}
arr.mean
arr.sd
arr.range
(lm1 <- lm(arr.sd~arr.mean))
(lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
(lm2 <- lm(arr.range~arr.mean))
bitmap(file='test1.png')
plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
dev.off()
bitmap(file='test2.png')
plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Section',header=TRUE)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,'Standard Deviation',header=TRUE)
a<-table.element(a,'Range',header=TRUE)
a<-table.row.end(a)
for (j in 1:np) {
a<-table.row.start(a)
a<-table.element(a,j,header=TRUE)
a<-table.element(a,arr.mean[j])
a<-table.element(a,arr.sd[j] )
a<-table.element(a,arr.range[j] )
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lambda',header=TRUE)
a<-table.element(a,1-lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')