Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 27 Nov 2009 02:33:35 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/27/t12593145383a5vrwijpa9eqe0.htm/, Retrieved Wed, 13 Nov 2024 01:04:58 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=60497, Retrieved Wed, 13 Nov 2024 01:04:58 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact238
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
- RMPD  [Multiple Regression] [Seatbelt] [2009-11-12 13:54:52] [b98453cac15ba1066b407e146608df68]
-    D    [Multiple Regression] [WS7] [2009-11-18 15:22:11] [cd6314e7e707a6546bd4604c9d1f2b69]
-   P       [Multiple Regression] [ws7] [2009-11-18 18:56:17] [cd6314e7e707a6546bd4604c9d1f2b69]
-   P         [Multiple Regression] [ws7] [2009-11-18 19:32:58] [cd6314e7e707a6546bd4604c9d1f2b69]
-    D          [Multiple Regression] [ws7] [2009-11-18 20:48:06] [cd6314e7e707a6546bd4604c9d1f2b69]
-    D              [Multiple Regression] [verbetering ws7] [2009-11-27 09:33:35] [3d2053c5f7c50d3c075d87ce0bd87294] [Current]
Feedback Forum

Post a new message
Dataseries X:
200237	536662	204045	209465	213587	216234
203666	542722	200237	204045	209465	213587
241476	593530	203666	200237	204045	209465
260307	610763	241476	203666	200237	204045
243324	612613	260307	241476	203666	200237
244460	611324	243324	260307	241476	203666
233575	594167	244460	243324	260307	241476
237217	595454	233575	244460	243324	260307
235243	590865	237217	233575	244460	243324
230354	589379	235243	237217	233575	244460
227184	584428	230354	235243	237217	233575
221678	573100	227184	230354	235243	237217
217142	567456	221678	227184	230354	235243
219452	569028	217142	221678	227184	230354
256446	620735	219452	217142	221678	227184
265845	628884	256446	219452	217142	221678
248624	628232	265845	256446	219452	217142
241114	612117	248624	265845	256446	219452
229245	595404	241114	248624	265845	256446
231805	597141	229245	241114	248624	265845
219277	593408	231805	229245	241114	248624
219313	590072	219277	231805	229245	241114
212610	579799	219313	219277	231805	229245
214771	574205	212610	219313	219277	231805
211142	572775	214771	212610	219313	219277
211457	572942	211142	214771	212610	219313
240048	619567	211457	211142	214771	212610
240636	625809	240048	211457	211142	214771
230580	619916	240636	240048	211457	211142
208795	587625	230580	240636	240048	211457
197922	565742	208795	230580	240636	240048
194596	557274	197922	208795	230580	240636
194581	560576	194596	197922	208795	230580
185686	548854	194581	194596	197922	208795
178106	531673	185686	194581	194596	197922
172608	525919	178106	185686	194581	194596
167302	511038	172608	178106	185686	194581
168053	498662	167302	172608	178106	185686
202300	555362	168053	167302	172608	178106
202388	564591	202300	168053	167302	172608
182516	541657	202388	202300	168053	167302
173476	527070	182516	202388	202300	168053
166444	509846	173476	182516	202388	202300
171297	514258	166444	173476	182516	202388
169701	516922	171297	166444	173476	182516
164182	507561	169701	171297	166444	173476
161914	492622	164182	169701	171297	166444
159612	490243	161914	164182	169701	171297
151001	469357	159612	161914	164182	169701
158114	477580	151001	159612	161914	164182
186530	528379	158114	151001	159612	161914
187069	533590	186530	158114	151001	159612
174330	517945	187069	186530	158114	151001
169362	506174	174330	187069	186530	158114
166827	501866	169362	174330	187069	186530
178037	516141	166827	169362	174330	187069
186412	528222	178037	166827	169362	174330
189226	532638	186412	178037	166827	169362
191563	536322	189226	186412	178037	166827
188906	536535	191563	189226	186412	178037
186005	523597	188906	191563	189226	186412
195309	536214	186005	188906	191563	189226
223532	586570	195309	186005	188906	191563
226899	596594	223532	195309	186005	188906
214126	580523	226899	223532	195309	186005




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=60497&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=60497&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=60497&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
yt[t] = -36966.1549603009 + 0.22521259944289xt[t] + 0.78008644395922`yt-1`[t] + 0.264724289662743`yt-2`[t] -0.254204822249017`yt-3`[t] -0.203055482260318`yt-4`[t] -347.98479049917M1[t] + 6078.80639576497M2[t] + 23777.7731454625M3[t] -879.960276448189M4[t] -26288.3288224235M5[t] -13027.8366627345M6[t] + 837.100853143718M7[t] + 10420.6488383957M8[t] + 2634.58407307717M9[t] -3258.91930047984M10[t] -2450.69027059630M11[t] -133.111522809557t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
yt[t] =  -36966.1549603009 +  0.22521259944289xt[t] +  0.78008644395922`yt-1`[t] +  0.264724289662743`yt-2`[t] -0.254204822249017`yt-3`[t] -0.203055482260318`yt-4`[t] -347.98479049917M1[t] +  6078.80639576497M2[t] +  23777.7731454625M3[t] -879.960276448189M4[t] -26288.3288224235M5[t] -13027.8366627345M6[t] +  837.100853143718M7[t] +  10420.6488383957M8[t] +  2634.58407307717M9[t] -3258.91930047984M10[t] -2450.69027059630M11[t] -133.111522809557t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=60497&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]yt[t] =  -36966.1549603009 +  0.22521259944289xt[t] +  0.78008644395922`yt-1`[t] +  0.264724289662743`yt-2`[t] -0.254204822249017`yt-3`[t] -0.203055482260318`yt-4`[t] -347.98479049917M1[t] +  6078.80639576497M2[t] +  23777.7731454625M3[t] -879.960276448189M4[t] -26288.3288224235M5[t] -13027.8366627345M6[t] +  837.100853143718M7[t] +  10420.6488383957M8[t] +  2634.58407307717M9[t] -3258.91930047984M10[t] -2450.69027059630M11[t] -133.111522809557t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=60497&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=60497&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
yt[t] = -36966.1549603009 + 0.22521259944289xt[t] + 0.78008644395922`yt-1`[t] + 0.264724289662743`yt-2`[t] -0.254204822249017`yt-3`[t] -0.203055482260318`yt-4`[t] -347.98479049917M1[t] + 6078.80639576497M2[t] + 23777.7731454625M3[t] -879.960276448189M4[t] -26288.3288224235M5[t] -13027.8366627345M6[t] + 837.100853143718M7[t] + 10420.6488383957M8[t] + 2634.58407307717M9[t] -3258.91930047984M10[t] -2450.69027059630M11[t] -133.111522809557t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-36966.154960300922937.83424-1.61160.1137490.056875
xt0.225212599442890.0901422.49840.016030.008015
`yt-1`0.780086443959220.1655444.71232.2e-051.1e-05
`yt-2`0.2647242896627430.1949791.35770.1810410.09052
`yt-3`-0.2542048222490170.193207-1.31570.1946520.097326
`yt-4`-0.2030554822603180.148286-1.36930.1773980.088699
M1-347.984790499172866.797343-0.12140.9039040.451952
M26078.806395764972785.1217222.18260.0340960.017048
M323777.77314546255409.3730494.39576.3e-053.1e-05
M4-879.9602764481896192.846762-0.14210.8876140.443807
M5-26288.32882242355194.015973-5.06137e-063e-06
M6-13027.83666273456464.106182-2.01540.04960.0248
M7837.1008531437183603.2299110.23230.8172980.408649
M810420.64883839573475.9141872.9980.0043330.002167
M92634.584073077173462.0620740.7610.4504660.225233
M10-3258.919300479843240.768223-1.00560.3197570.159878
M11-2450.690270596302985.771893-0.82080.415910.207955
t-133.11152280955757.949216-2.2970.0261180.013059

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -36966.1549603009 & 22937.83424 & -1.6116 & 0.113749 & 0.056875 \tabularnewline
xt & 0.22521259944289 & 0.090142 & 2.4984 & 0.01603 & 0.008015 \tabularnewline
`yt-1` & 0.78008644395922 & 0.165544 & 4.7123 & 2.2e-05 & 1.1e-05 \tabularnewline
`yt-2` & 0.264724289662743 & 0.194979 & 1.3577 & 0.181041 & 0.09052 \tabularnewline
`yt-3` & -0.254204822249017 & 0.193207 & -1.3157 & 0.194652 & 0.097326 \tabularnewline
`yt-4` & -0.203055482260318 & 0.148286 & -1.3693 & 0.177398 & 0.088699 \tabularnewline
M1 & -347.98479049917 & 2866.797343 & -0.1214 & 0.903904 & 0.451952 \tabularnewline
M2 & 6078.80639576497 & 2785.121722 & 2.1826 & 0.034096 & 0.017048 \tabularnewline
M3 & 23777.7731454625 & 5409.373049 & 4.3957 & 6.3e-05 & 3.1e-05 \tabularnewline
M4 & -879.960276448189 & 6192.846762 & -0.1421 & 0.887614 & 0.443807 \tabularnewline
M5 & -26288.3288224235 & 5194.015973 & -5.0613 & 7e-06 & 3e-06 \tabularnewline
M6 & -13027.8366627345 & 6464.106182 & -2.0154 & 0.0496 & 0.0248 \tabularnewline
M7 & 837.100853143718 & 3603.229911 & 0.2323 & 0.817298 & 0.408649 \tabularnewline
M8 & 10420.6488383957 & 3475.914187 & 2.998 & 0.004333 & 0.002167 \tabularnewline
M9 & 2634.58407307717 & 3462.062074 & 0.761 & 0.450466 & 0.225233 \tabularnewline
M10 & -3258.91930047984 & 3240.768223 & -1.0056 & 0.319757 & 0.159878 \tabularnewline
M11 & -2450.69027059630 & 2985.771893 & -0.8208 & 0.41591 & 0.207955 \tabularnewline
t & -133.111522809557 & 57.949216 & -2.297 & 0.026118 & 0.013059 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=60497&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-36966.1549603009[/C][C]22937.83424[/C][C]-1.6116[/C][C]0.113749[/C][C]0.056875[/C][/ROW]
[ROW][C]xt[/C][C]0.22521259944289[/C][C]0.090142[/C][C]2.4984[/C][C]0.01603[/C][C]0.008015[/C][/ROW]
[ROW][C]`yt-1`[/C][C]0.78008644395922[/C][C]0.165544[/C][C]4.7123[/C][C]2.2e-05[/C][C]1.1e-05[/C][/ROW]
[ROW][C]`yt-2`[/C][C]0.264724289662743[/C][C]0.194979[/C][C]1.3577[/C][C]0.181041[/C][C]0.09052[/C][/ROW]
[ROW][C]`yt-3`[/C][C]-0.254204822249017[/C][C]0.193207[/C][C]-1.3157[/C][C]0.194652[/C][C]0.097326[/C][/ROW]
[ROW][C]`yt-4`[/C][C]-0.203055482260318[/C][C]0.148286[/C][C]-1.3693[/C][C]0.177398[/C][C]0.088699[/C][/ROW]
[ROW][C]M1[/C][C]-347.98479049917[/C][C]2866.797343[/C][C]-0.1214[/C][C]0.903904[/C][C]0.451952[/C][/ROW]
[ROW][C]M2[/C][C]6078.80639576497[/C][C]2785.121722[/C][C]2.1826[/C][C]0.034096[/C][C]0.017048[/C][/ROW]
[ROW][C]M3[/C][C]23777.7731454625[/C][C]5409.373049[/C][C]4.3957[/C][C]6.3e-05[/C][C]3.1e-05[/C][/ROW]
[ROW][C]M4[/C][C]-879.960276448189[/C][C]6192.846762[/C][C]-0.1421[/C][C]0.887614[/C][C]0.443807[/C][/ROW]
[ROW][C]M5[/C][C]-26288.3288224235[/C][C]5194.015973[/C][C]-5.0613[/C][C]7e-06[/C][C]3e-06[/C][/ROW]
[ROW][C]M6[/C][C]-13027.8366627345[/C][C]6464.106182[/C][C]-2.0154[/C][C]0.0496[/C][C]0.0248[/C][/ROW]
[ROW][C]M7[/C][C]837.100853143718[/C][C]3603.229911[/C][C]0.2323[/C][C]0.817298[/C][C]0.408649[/C][/ROW]
[ROW][C]M8[/C][C]10420.6488383957[/C][C]3475.914187[/C][C]2.998[/C][C]0.004333[/C][C]0.002167[/C][/ROW]
[ROW][C]M9[/C][C]2634.58407307717[/C][C]3462.062074[/C][C]0.761[/C][C]0.450466[/C][C]0.225233[/C][/ROW]
[ROW][C]M10[/C][C]-3258.91930047984[/C][C]3240.768223[/C][C]-1.0056[/C][C]0.319757[/C][C]0.159878[/C][/ROW]
[ROW][C]M11[/C][C]-2450.69027059630[/C][C]2985.771893[/C][C]-0.8208[/C][C]0.41591[/C][C]0.207955[/C][/ROW]
[ROW][C]t[/C][C]-133.111522809557[/C][C]57.949216[/C][C]-2.297[/C][C]0.026118[/C][C]0.013059[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=60497&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=60497&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-36966.154960300922937.83424-1.61160.1137490.056875
xt0.225212599442890.0901422.49840.016030.008015
`yt-1`0.780086443959220.1655444.71232.2e-051.1e-05
`yt-2`0.2647242896627430.1949791.35770.1810410.09052
`yt-3`-0.2542048222490170.193207-1.31570.1946520.097326
`yt-4`-0.2030554822603180.148286-1.36930.1773980.088699
M1-347.984790499172866.797343-0.12140.9039040.451952
M26078.806395764972785.1217222.18260.0340960.017048
M323777.77314546255409.3730494.39576.3e-053.1e-05
M4-879.9602764481896192.846762-0.14210.8876140.443807
M5-26288.32882242355194.015973-5.06137e-063e-06
M6-13027.83666273456464.106182-2.01540.04960.0248
M7837.1008531437183603.2299110.23230.8172980.408649
M810420.64883839573475.9141872.9980.0043330.002167
M92634.584073077173462.0620740.7610.4504660.225233
M10-3258.919300479843240.768223-1.00560.3197570.159878
M11-2450.690270596302985.771893-0.82080.415910.207955
t-133.11152280955757.949216-2.2970.0261180.013059







Multiple Linear Regression - Regression Statistics
Multiple R0.991167080004474
R-squared0.982412180484596
Adjusted R-squared0.976050628744981
F-TEST (value)154.429645579548
F-TEST (DF numerator)17
F-TEST (DF denominator)47
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation4551.16421878486
Sum Squared Residuals973515500.07834

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.991167080004474 \tabularnewline
R-squared & 0.982412180484596 \tabularnewline
Adjusted R-squared & 0.976050628744981 \tabularnewline
F-TEST (value) & 154.429645579548 \tabularnewline
F-TEST (DF numerator) & 17 \tabularnewline
F-TEST (DF denominator) & 47 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 4551.16421878486 \tabularnewline
Sum Squared Residuals & 973515500.07834 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=60497&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.991167080004474[/C][/ROW]
[ROW][C]R-squared[/C][C]0.982412180484596[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.976050628744981[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]154.429645579548[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]17[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]47[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]4551.16421878486[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]973515500.07834[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=60497&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=60497&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.991167080004474
R-squared0.982412180484596
Adjusted R-squared0.976050628744981
F-TEST (value)154.429645579548
F-TEST (DF numerator)17
F-TEST (DF denominator)47
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation4551.16421878486
Sum Squared Residuals973515500.07834







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1200237199836.660039697400.339960302505
2203666204675.073366061-1009.07336606120
3241476237565.1615012113910.83849878931
4260307249126.78599501711180.2140049834
5243324248602.549394501-5278.54939450088
6244460242868.6844336721591.31556632780
7233575236662.444655061-3087.44465506060
8237217238705.638293358-1488.63829335779
9235243232872.2268994592370.77310054110
10230354228471.5297652291882.47023477076
11227184224979.6562819232204.34371807677
12221678220741.187876437936.81212356349
13217142215498.2985911591643.70140884093
14219452218948.535951556503.464048444141
15256446250804.0069955415641.99300445873
16265845259589.5470996766255.4529003237
17248624251360.317802748-2736.31780274849
18241114240039.5609884231074.43901157729
19229245229689.036985530-444.036985529751
20231805230752.8850806711052.11491932911
21219277226253.895536446-6976.89553644604
22219313214922.8463270024390.15367299793
23212610211755.273185077854.726814922845
24214771210258.4792706994512.52072930115
25211142211901.376540130-759.376540129599
26211457217670.427118698-6213.42711869812
27240048245833.606853983-5785.60685398271
28240636245319.085028244-4683.08502824393
29230580227134.6639318523445.33606814812
30208795217968.880572155-9173.88057215511
31197922201161.096884328-3239.09688432764
32194596196892.421568183-2296.42156818325
33194581191823.7605516092757.23944839119
34185686189452.561993850-3766.56199384959
35178106182368.769543950-4262.76954394974
36172608175801.872799113-3193.87279911266
37167302167938.060135102-636.060135101805
38168053169582.966918991-1529.96691899087
39202300202036.373041012263.626958988097
40202388208703.653392679-6315.65339267872
41182516188018.312490783-5502.31249078323
42173476173523.687647982-47.6876479823754
43166444164087.4581653502356.54183464975
44171297171686.546509356-389.54650935584
45169701172624.685030377-2923.68503037744
46164182168152.733873489-3970.73387348871
47161914160929.833455853984.166544147243
48159612158901.664660917710.335339083216
49151001153047.657276374-2046.65727637441
50158114155563.7402047672550.25979523312
51186530188885.093622934-2355.09362293394
52187069191974.143242376-4905.14324237641
53174330170792.4359207443537.56407925560
54169362162806.1863577686555.81364223239
55166827162412.9633097324414.03669026824
56178037174914.5085484323122.49145156777
57186412181639.4319821094772.56801789119
58189226187761.3280404301464.67195956961
59191563191343.467533197219.532466802877
60188906191871.795392835-2965.79539283518
61186005184606.9474175381398.05258246237
62195309189610.2564399275698.74356007292
63223532225207.757985319-1675.75798531948
64226899228430.785242008-1531.78524200806
65214126207591.7204593716534.27954062887

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 200237 & 199836.660039697 & 400.339960302505 \tabularnewline
2 & 203666 & 204675.073366061 & -1009.07336606120 \tabularnewline
3 & 241476 & 237565.161501211 & 3910.83849878931 \tabularnewline
4 & 260307 & 249126.785995017 & 11180.2140049834 \tabularnewline
5 & 243324 & 248602.549394501 & -5278.54939450088 \tabularnewline
6 & 244460 & 242868.684433672 & 1591.31556632780 \tabularnewline
7 & 233575 & 236662.444655061 & -3087.44465506060 \tabularnewline
8 & 237217 & 238705.638293358 & -1488.63829335779 \tabularnewline
9 & 235243 & 232872.226899459 & 2370.77310054110 \tabularnewline
10 & 230354 & 228471.529765229 & 1882.47023477076 \tabularnewline
11 & 227184 & 224979.656281923 & 2204.34371807677 \tabularnewline
12 & 221678 & 220741.187876437 & 936.81212356349 \tabularnewline
13 & 217142 & 215498.298591159 & 1643.70140884093 \tabularnewline
14 & 219452 & 218948.535951556 & 503.464048444141 \tabularnewline
15 & 256446 & 250804.006995541 & 5641.99300445873 \tabularnewline
16 & 265845 & 259589.547099676 & 6255.4529003237 \tabularnewline
17 & 248624 & 251360.317802748 & -2736.31780274849 \tabularnewline
18 & 241114 & 240039.560988423 & 1074.43901157729 \tabularnewline
19 & 229245 & 229689.036985530 & -444.036985529751 \tabularnewline
20 & 231805 & 230752.885080671 & 1052.11491932911 \tabularnewline
21 & 219277 & 226253.895536446 & -6976.89553644604 \tabularnewline
22 & 219313 & 214922.846327002 & 4390.15367299793 \tabularnewline
23 & 212610 & 211755.273185077 & 854.726814922845 \tabularnewline
24 & 214771 & 210258.479270699 & 4512.52072930115 \tabularnewline
25 & 211142 & 211901.376540130 & -759.376540129599 \tabularnewline
26 & 211457 & 217670.427118698 & -6213.42711869812 \tabularnewline
27 & 240048 & 245833.606853983 & -5785.60685398271 \tabularnewline
28 & 240636 & 245319.085028244 & -4683.08502824393 \tabularnewline
29 & 230580 & 227134.663931852 & 3445.33606814812 \tabularnewline
30 & 208795 & 217968.880572155 & -9173.88057215511 \tabularnewline
31 & 197922 & 201161.096884328 & -3239.09688432764 \tabularnewline
32 & 194596 & 196892.421568183 & -2296.42156818325 \tabularnewline
33 & 194581 & 191823.760551609 & 2757.23944839119 \tabularnewline
34 & 185686 & 189452.561993850 & -3766.56199384959 \tabularnewline
35 & 178106 & 182368.769543950 & -4262.76954394974 \tabularnewline
36 & 172608 & 175801.872799113 & -3193.87279911266 \tabularnewline
37 & 167302 & 167938.060135102 & -636.060135101805 \tabularnewline
38 & 168053 & 169582.966918991 & -1529.96691899087 \tabularnewline
39 & 202300 & 202036.373041012 & 263.626958988097 \tabularnewline
40 & 202388 & 208703.653392679 & -6315.65339267872 \tabularnewline
41 & 182516 & 188018.312490783 & -5502.31249078323 \tabularnewline
42 & 173476 & 173523.687647982 & -47.6876479823754 \tabularnewline
43 & 166444 & 164087.458165350 & 2356.54183464975 \tabularnewline
44 & 171297 & 171686.546509356 & -389.54650935584 \tabularnewline
45 & 169701 & 172624.685030377 & -2923.68503037744 \tabularnewline
46 & 164182 & 168152.733873489 & -3970.73387348871 \tabularnewline
47 & 161914 & 160929.833455853 & 984.166544147243 \tabularnewline
48 & 159612 & 158901.664660917 & 710.335339083216 \tabularnewline
49 & 151001 & 153047.657276374 & -2046.65727637441 \tabularnewline
50 & 158114 & 155563.740204767 & 2550.25979523312 \tabularnewline
51 & 186530 & 188885.093622934 & -2355.09362293394 \tabularnewline
52 & 187069 & 191974.143242376 & -4905.14324237641 \tabularnewline
53 & 174330 & 170792.435920744 & 3537.56407925560 \tabularnewline
54 & 169362 & 162806.186357768 & 6555.81364223239 \tabularnewline
55 & 166827 & 162412.963309732 & 4414.03669026824 \tabularnewline
56 & 178037 & 174914.508548432 & 3122.49145156777 \tabularnewline
57 & 186412 & 181639.431982109 & 4772.56801789119 \tabularnewline
58 & 189226 & 187761.328040430 & 1464.67195956961 \tabularnewline
59 & 191563 & 191343.467533197 & 219.532466802877 \tabularnewline
60 & 188906 & 191871.795392835 & -2965.79539283518 \tabularnewline
61 & 186005 & 184606.947417538 & 1398.05258246237 \tabularnewline
62 & 195309 & 189610.256439927 & 5698.74356007292 \tabularnewline
63 & 223532 & 225207.757985319 & -1675.75798531948 \tabularnewline
64 & 226899 & 228430.785242008 & -1531.78524200806 \tabularnewline
65 & 214126 & 207591.720459371 & 6534.27954062887 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=60497&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]200237[/C][C]199836.660039697[/C][C]400.339960302505[/C][/ROW]
[ROW][C]2[/C][C]203666[/C][C]204675.073366061[/C][C]-1009.07336606120[/C][/ROW]
[ROW][C]3[/C][C]241476[/C][C]237565.161501211[/C][C]3910.83849878931[/C][/ROW]
[ROW][C]4[/C][C]260307[/C][C]249126.785995017[/C][C]11180.2140049834[/C][/ROW]
[ROW][C]5[/C][C]243324[/C][C]248602.549394501[/C][C]-5278.54939450088[/C][/ROW]
[ROW][C]6[/C][C]244460[/C][C]242868.684433672[/C][C]1591.31556632780[/C][/ROW]
[ROW][C]7[/C][C]233575[/C][C]236662.444655061[/C][C]-3087.44465506060[/C][/ROW]
[ROW][C]8[/C][C]237217[/C][C]238705.638293358[/C][C]-1488.63829335779[/C][/ROW]
[ROW][C]9[/C][C]235243[/C][C]232872.226899459[/C][C]2370.77310054110[/C][/ROW]
[ROW][C]10[/C][C]230354[/C][C]228471.529765229[/C][C]1882.47023477076[/C][/ROW]
[ROW][C]11[/C][C]227184[/C][C]224979.656281923[/C][C]2204.34371807677[/C][/ROW]
[ROW][C]12[/C][C]221678[/C][C]220741.187876437[/C][C]936.81212356349[/C][/ROW]
[ROW][C]13[/C][C]217142[/C][C]215498.298591159[/C][C]1643.70140884093[/C][/ROW]
[ROW][C]14[/C][C]219452[/C][C]218948.535951556[/C][C]503.464048444141[/C][/ROW]
[ROW][C]15[/C][C]256446[/C][C]250804.006995541[/C][C]5641.99300445873[/C][/ROW]
[ROW][C]16[/C][C]265845[/C][C]259589.547099676[/C][C]6255.4529003237[/C][/ROW]
[ROW][C]17[/C][C]248624[/C][C]251360.317802748[/C][C]-2736.31780274849[/C][/ROW]
[ROW][C]18[/C][C]241114[/C][C]240039.560988423[/C][C]1074.43901157729[/C][/ROW]
[ROW][C]19[/C][C]229245[/C][C]229689.036985530[/C][C]-444.036985529751[/C][/ROW]
[ROW][C]20[/C][C]231805[/C][C]230752.885080671[/C][C]1052.11491932911[/C][/ROW]
[ROW][C]21[/C][C]219277[/C][C]226253.895536446[/C][C]-6976.89553644604[/C][/ROW]
[ROW][C]22[/C][C]219313[/C][C]214922.846327002[/C][C]4390.15367299793[/C][/ROW]
[ROW][C]23[/C][C]212610[/C][C]211755.273185077[/C][C]854.726814922845[/C][/ROW]
[ROW][C]24[/C][C]214771[/C][C]210258.479270699[/C][C]4512.52072930115[/C][/ROW]
[ROW][C]25[/C][C]211142[/C][C]211901.376540130[/C][C]-759.376540129599[/C][/ROW]
[ROW][C]26[/C][C]211457[/C][C]217670.427118698[/C][C]-6213.42711869812[/C][/ROW]
[ROW][C]27[/C][C]240048[/C][C]245833.606853983[/C][C]-5785.60685398271[/C][/ROW]
[ROW][C]28[/C][C]240636[/C][C]245319.085028244[/C][C]-4683.08502824393[/C][/ROW]
[ROW][C]29[/C][C]230580[/C][C]227134.663931852[/C][C]3445.33606814812[/C][/ROW]
[ROW][C]30[/C][C]208795[/C][C]217968.880572155[/C][C]-9173.88057215511[/C][/ROW]
[ROW][C]31[/C][C]197922[/C][C]201161.096884328[/C][C]-3239.09688432764[/C][/ROW]
[ROW][C]32[/C][C]194596[/C][C]196892.421568183[/C][C]-2296.42156818325[/C][/ROW]
[ROW][C]33[/C][C]194581[/C][C]191823.760551609[/C][C]2757.23944839119[/C][/ROW]
[ROW][C]34[/C][C]185686[/C][C]189452.561993850[/C][C]-3766.56199384959[/C][/ROW]
[ROW][C]35[/C][C]178106[/C][C]182368.769543950[/C][C]-4262.76954394974[/C][/ROW]
[ROW][C]36[/C][C]172608[/C][C]175801.872799113[/C][C]-3193.87279911266[/C][/ROW]
[ROW][C]37[/C][C]167302[/C][C]167938.060135102[/C][C]-636.060135101805[/C][/ROW]
[ROW][C]38[/C][C]168053[/C][C]169582.966918991[/C][C]-1529.96691899087[/C][/ROW]
[ROW][C]39[/C][C]202300[/C][C]202036.373041012[/C][C]263.626958988097[/C][/ROW]
[ROW][C]40[/C][C]202388[/C][C]208703.653392679[/C][C]-6315.65339267872[/C][/ROW]
[ROW][C]41[/C][C]182516[/C][C]188018.312490783[/C][C]-5502.31249078323[/C][/ROW]
[ROW][C]42[/C][C]173476[/C][C]173523.687647982[/C][C]-47.6876479823754[/C][/ROW]
[ROW][C]43[/C][C]166444[/C][C]164087.458165350[/C][C]2356.54183464975[/C][/ROW]
[ROW][C]44[/C][C]171297[/C][C]171686.546509356[/C][C]-389.54650935584[/C][/ROW]
[ROW][C]45[/C][C]169701[/C][C]172624.685030377[/C][C]-2923.68503037744[/C][/ROW]
[ROW][C]46[/C][C]164182[/C][C]168152.733873489[/C][C]-3970.73387348871[/C][/ROW]
[ROW][C]47[/C][C]161914[/C][C]160929.833455853[/C][C]984.166544147243[/C][/ROW]
[ROW][C]48[/C][C]159612[/C][C]158901.664660917[/C][C]710.335339083216[/C][/ROW]
[ROW][C]49[/C][C]151001[/C][C]153047.657276374[/C][C]-2046.65727637441[/C][/ROW]
[ROW][C]50[/C][C]158114[/C][C]155563.740204767[/C][C]2550.25979523312[/C][/ROW]
[ROW][C]51[/C][C]186530[/C][C]188885.093622934[/C][C]-2355.09362293394[/C][/ROW]
[ROW][C]52[/C][C]187069[/C][C]191974.143242376[/C][C]-4905.14324237641[/C][/ROW]
[ROW][C]53[/C][C]174330[/C][C]170792.435920744[/C][C]3537.56407925560[/C][/ROW]
[ROW][C]54[/C][C]169362[/C][C]162806.186357768[/C][C]6555.81364223239[/C][/ROW]
[ROW][C]55[/C][C]166827[/C][C]162412.963309732[/C][C]4414.03669026824[/C][/ROW]
[ROW][C]56[/C][C]178037[/C][C]174914.508548432[/C][C]3122.49145156777[/C][/ROW]
[ROW][C]57[/C][C]186412[/C][C]181639.431982109[/C][C]4772.56801789119[/C][/ROW]
[ROW][C]58[/C][C]189226[/C][C]187761.328040430[/C][C]1464.67195956961[/C][/ROW]
[ROW][C]59[/C][C]191563[/C][C]191343.467533197[/C][C]219.532466802877[/C][/ROW]
[ROW][C]60[/C][C]188906[/C][C]191871.795392835[/C][C]-2965.79539283518[/C][/ROW]
[ROW][C]61[/C][C]186005[/C][C]184606.947417538[/C][C]1398.05258246237[/C][/ROW]
[ROW][C]62[/C][C]195309[/C][C]189610.256439927[/C][C]5698.74356007292[/C][/ROW]
[ROW][C]63[/C][C]223532[/C][C]225207.757985319[/C][C]-1675.75798531948[/C][/ROW]
[ROW][C]64[/C][C]226899[/C][C]228430.785242008[/C][C]-1531.78524200806[/C][/ROW]
[ROW][C]65[/C][C]214126[/C][C]207591.720459371[/C][C]6534.27954062887[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=60497&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=60497&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1200237199836.660039697400.339960302505
2203666204675.073366061-1009.07336606120
3241476237565.1615012113910.83849878931
4260307249126.78599501711180.2140049834
5243324248602.549394501-5278.54939450088
6244460242868.6844336721591.31556632780
7233575236662.444655061-3087.44465506060
8237217238705.638293358-1488.63829335779
9235243232872.2268994592370.77310054110
10230354228471.5297652291882.47023477076
11227184224979.6562819232204.34371807677
12221678220741.187876437936.81212356349
13217142215498.2985911591643.70140884093
14219452218948.535951556503.464048444141
15256446250804.0069955415641.99300445873
16265845259589.5470996766255.4529003237
17248624251360.317802748-2736.31780274849
18241114240039.5609884231074.43901157729
19229245229689.036985530-444.036985529751
20231805230752.8850806711052.11491932911
21219277226253.895536446-6976.89553644604
22219313214922.8463270024390.15367299793
23212610211755.273185077854.726814922845
24214771210258.4792706994512.52072930115
25211142211901.376540130-759.376540129599
26211457217670.427118698-6213.42711869812
27240048245833.606853983-5785.60685398271
28240636245319.085028244-4683.08502824393
29230580227134.6639318523445.33606814812
30208795217968.880572155-9173.88057215511
31197922201161.096884328-3239.09688432764
32194596196892.421568183-2296.42156818325
33194581191823.7605516092757.23944839119
34185686189452.561993850-3766.56199384959
35178106182368.769543950-4262.76954394974
36172608175801.872799113-3193.87279911266
37167302167938.060135102-636.060135101805
38168053169582.966918991-1529.96691899087
39202300202036.373041012263.626958988097
40202388208703.653392679-6315.65339267872
41182516188018.312490783-5502.31249078323
42173476173523.687647982-47.6876479823754
43166444164087.4581653502356.54183464975
44171297171686.546509356-389.54650935584
45169701172624.685030377-2923.68503037744
46164182168152.733873489-3970.73387348871
47161914160929.833455853984.166544147243
48159612158901.664660917710.335339083216
49151001153047.657276374-2046.65727637441
50158114155563.7402047672550.25979523312
51186530188885.093622934-2355.09362293394
52187069191974.143242376-4905.14324237641
53174330170792.4359207443537.56407925560
54169362162806.1863577686555.81364223239
55166827162412.9633097324414.03669026824
56178037174914.5085484323122.49145156777
57186412181639.4319821094772.56801789119
58189226187761.3280404301464.67195956961
59191563191343.467533197219.532466802877
60188906191871.795392835-2965.79539283518
61186005184606.9474175381398.05258246237
62195309189610.2564399275698.74356007292
63223532225207.757985319-1675.75798531948
64226899228430.785242008-1531.78524200806
65214126207591.7204593716534.27954062887







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
210.298532864046380.597065728092760.70146713595362
220.2477837252641270.4955674505282530.752216274735873
230.1721493221339610.3442986442679220.827850677866039
240.8172629373368850.3654741253262310.182737062663115
250.7515490662851330.4969018674297330.248450933714867
260.6483692007900140.7032615984199720.351630799209986
270.710183232210650.5796335355787010.289816767789351
280.9662008970020740.06759820599585110.0337991029979256
290.979187868424030.04162426315193910.0208121315759695
300.9627890868598140.07442182628037260.0372109131401863
310.976144841431970.04771031713605810.0238551585680290
320.9878620450344910.02427590993101720.0121379549655086
330.9914931822409340.01701363551813160.00850681775906582
340.9860476305522440.02790473889551170.0139523694477558
350.9763854015471230.04722919690575480.0236145984528774
360.9552034329250470.08959313414990570.0447965670749528
370.9817539836014250.03649203279714990.0182460163985749
380.993043046348290.01391390730341960.00695695365170981
390.9969019880897530.006196023820493880.00309801191024694
400.9924306231976160.01513875360476720.00756937680238358
410.980158606992830.03968278601434060.0198413930071703
420.957785454354070.08442909129185880.0422145456459294
430.9512918119103260.09741637617934880.0487081880896744
440.9724038677376870.05519226452462690.0275961322623135

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
21 & 0.29853286404638 & 0.59706572809276 & 0.70146713595362 \tabularnewline
22 & 0.247783725264127 & 0.495567450528253 & 0.752216274735873 \tabularnewline
23 & 0.172149322133961 & 0.344298644267922 & 0.827850677866039 \tabularnewline
24 & 0.817262937336885 & 0.365474125326231 & 0.182737062663115 \tabularnewline
25 & 0.751549066285133 & 0.496901867429733 & 0.248450933714867 \tabularnewline
26 & 0.648369200790014 & 0.703261598419972 & 0.351630799209986 \tabularnewline
27 & 0.71018323221065 & 0.579633535578701 & 0.289816767789351 \tabularnewline
28 & 0.966200897002074 & 0.0675982059958511 & 0.0337991029979256 \tabularnewline
29 & 0.97918786842403 & 0.0416242631519391 & 0.0208121315759695 \tabularnewline
30 & 0.962789086859814 & 0.0744218262803726 & 0.0372109131401863 \tabularnewline
31 & 0.97614484143197 & 0.0477103171360581 & 0.0238551585680290 \tabularnewline
32 & 0.987862045034491 & 0.0242759099310172 & 0.0121379549655086 \tabularnewline
33 & 0.991493182240934 & 0.0170136355181316 & 0.00850681775906582 \tabularnewline
34 & 0.986047630552244 & 0.0279047388955117 & 0.0139523694477558 \tabularnewline
35 & 0.976385401547123 & 0.0472291969057548 & 0.0236145984528774 \tabularnewline
36 & 0.955203432925047 & 0.0895931341499057 & 0.0447965670749528 \tabularnewline
37 & 0.981753983601425 & 0.0364920327971499 & 0.0182460163985749 \tabularnewline
38 & 0.99304304634829 & 0.0139139073034196 & 0.00695695365170981 \tabularnewline
39 & 0.996901988089753 & 0.00619602382049388 & 0.00309801191024694 \tabularnewline
40 & 0.992430623197616 & 0.0151387536047672 & 0.00756937680238358 \tabularnewline
41 & 0.98015860699283 & 0.0396827860143406 & 0.0198413930071703 \tabularnewline
42 & 0.95778545435407 & 0.0844290912918588 & 0.0422145456459294 \tabularnewline
43 & 0.951291811910326 & 0.0974163761793488 & 0.0487081880896744 \tabularnewline
44 & 0.972403867737687 & 0.0551922645246269 & 0.0275961322623135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=60497&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]21[/C][C]0.29853286404638[/C][C]0.59706572809276[/C][C]0.70146713595362[/C][/ROW]
[ROW][C]22[/C][C]0.247783725264127[/C][C]0.495567450528253[/C][C]0.752216274735873[/C][/ROW]
[ROW][C]23[/C][C]0.172149322133961[/C][C]0.344298644267922[/C][C]0.827850677866039[/C][/ROW]
[ROW][C]24[/C][C]0.817262937336885[/C][C]0.365474125326231[/C][C]0.182737062663115[/C][/ROW]
[ROW][C]25[/C][C]0.751549066285133[/C][C]0.496901867429733[/C][C]0.248450933714867[/C][/ROW]
[ROW][C]26[/C][C]0.648369200790014[/C][C]0.703261598419972[/C][C]0.351630799209986[/C][/ROW]
[ROW][C]27[/C][C]0.71018323221065[/C][C]0.579633535578701[/C][C]0.289816767789351[/C][/ROW]
[ROW][C]28[/C][C]0.966200897002074[/C][C]0.0675982059958511[/C][C]0.0337991029979256[/C][/ROW]
[ROW][C]29[/C][C]0.97918786842403[/C][C]0.0416242631519391[/C][C]0.0208121315759695[/C][/ROW]
[ROW][C]30[/C][C]0.962789086859814[/C][C]0.0744218262803726[/C][C]0.0372109131401863[/C][/ROW]
[ROW][C]31[/C][C]0.97614484143197[/C][C]0.0477103171360581[/C][C]0.0238551585680290[/C][/ROW]
[ROW][C]32[/C][C]0.987862045034491[/C][C]0.0242759099310172[/C][C]0.0121379549655086[/C][/ROW]
[ROW][C]33[/C][C]0.991493182240934[/C][C]0.0170136355181316[/C][C]0.00850681775906582[/C][/ROW]
[ROW][C]34[/C][C]0.986047630552244[/C][C]0.0279047388955117[/C][C]0.0139523694477558[/C][/ROW]
[ROW][C]35[/C][C]0.976385401547123[/C][C]0.0472291969057548[/C][C]0.0236145984528774[/C][/ROW]
[ROW][C]36[/C][C]0.955203432925047[/C][C]0.0895931341499057[/C][C]0.0447965670749528[/C][/ROW]
[ROW][C]37[/C][C]0.981753983601425[/C][C]0.0364920327971499[/C][C]0.0182460163985749[/C][/ROW]
[ROW][C]38[/C][C]0.99304304634829[/C][C]0.0139139073034196[/C][C]0.00695695365170981[/C][/ROW]
[ROW][C]39[/C][C]0.996901988089753[/C][C]0.00619602382049388[/C][C]0.00309801191024694[/C][/ROW]
[ROW][C]40[/C][C]0.992430623197616[/C][C]0.0151387536047672[/C][C]0.00756937680238358[/C][/ROW]
[ROW][C]41[/C][C]0.98015860699283[/C][C]0.0396827860143406[/C][C]0.0198413930071703[/C][/ROW]
[ROW][C]42[/C][C]0.95778545435407[/C][C]0.0844290912918588[/C][C]0.0422145456459294[/C][/ROW]
[ROW][C]43[/C][C]0.951291811910326[/C][C]0.0974163761793488[/C][C]0.0487081880896744[/C][/ROW]
[ROW][C]44[/C][C]0.972403867737687[/C][C]0.0551922645246269[/C][C]0.0275961322623135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=60497&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=60497&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
210.298532864046380.597065728092760.70146713595362
220.2477837252641270.4955674505282530.752216274735873
230.1721493221339610.3442986442679220.827850677866039
240.8172629373368850.3654741253262310.182737062663115
250.7515490662851330.4969018674297330.248450933714867
260.6483692007900140.7032615984199720.351630799209986
270.710183232210650.5796335355787010.289816767789351
280.9662008970020740.06759820599585110.0337991029979256
290.979187868424030.04162426315193910.0208121315759695
300.9627890868598140.07442182628037260.0372109131401863
310.976144841431970.04771031713605810.0238551585680290
320.9878620450344910.02427590993101720.0121379549655086
330.9914931822409340.01701363551813160.00850681775906582
340.9860476305522440.02790473889551170.0139523694477558
350.9763854015471230.04722919690575480.0236145984528774
360.9552034329250470.08959313414990570.0447965670749528
370.9817539836014250.03649203279714990.0182460163985749
380.993043046348290.01391390730341960.00695695365170981
390.9969019880897530.006196023820493880.00309801191024694
400.9924306231976160.01513875360476720.00756937680238358
410.980158606992830.03968278601434060.0198413930071703
420.957785454354070.08442909129185880.0422145456459294
430.9512918119103260.09741637617934880.0487081880896744
440.9724038677376870.05519226452462690.0275961322623135







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level10.0416666666666667NOK
5% type I error level110.458333333333333NOK
10% type I error level170.708333333333333NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 1 & 0.0416666666666667 & NOK \tabularnewline
5% type I error level & 11 & 0.458333333333333 & NOK \tabularnewline
10% type I error level & 17 & 0.708333333333333 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=60497&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]1[/C][C]0.0416666666666667[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]11[/C][C]0.458333333333333[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]17[/C][C]0.708333333333333[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=60497&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=60497&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level10.0416666666666667NOK
5% type I error level110.458333333333333NOK
10% type I error level170.708333333333333NOK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}