Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 20 Nov 2009 07:17:31 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/20/t1258726737r8cxfhvqg02uzp6.htm/, Retrieved Wed, 15 Jan 2025 10:17:55 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=58192, Retrieved Wed, 15 Jan 2025 10:17:55 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact212
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
- RMPD  [Multiple Regression] [Seatbelt] [2009-11-12 14:03:14] [b98453cac15ba1066b407e146608df68]
F R  D    [Multiple Regression] [Model 2] [2009-11-18 20:35:45] [1f74ef2f756548f1f3a7b6136ea56d7f]
-   PD        [Multiple Regression] [model 3 ws 7] [2009-11-20 14:17:31] [4f297b039e1043ebee7ff7a83b1eaaaa] [Current]
Feedback Forum

Post a new message
Dataseries X:
100.01	0
103.84	0
104.48	0
95.43	0
104.80	0
108.64	0
105.65	0
108.42	0
115.35	0
113.64	0
115.24	0
100.33	0
101.29	0
104.48	0
99.26	0
100.11	0
103.52	0
101.18	0
96.39	0
97.56	0
96.39	0
85.10	0
79.77	0
79.13	0
80.84	0
82.75	0
92.55	0
96.60	0
96.92	0
95.32	0
98.52	0
100.22	0
104.91	0
103.10	0
97.13	0
103.42	0
111.72	0
118.11	0
111.62	0
100.22	0
102.03	0
105.76	0
107.68	0
110.77	0
105.44	0
112.26	0
114.07	0
117.90	0
124.72	0
126.42	0
134.73	0
135.79	0
143.36	0
140.37	0
144.74	0
151.98	0
150.92	0
163.38	0
154.43	0
146.66	0
157.95	0
162.10	0
180.42	0
179.57	0
171.58	0
185.43	0
190.64	0
203.00	0
202.36	0
193.41	0
186.17	0
192.24	0
209.60	0
206.41	0
209.82	0
230.37	0
235.80	0
232.07	0
244.64	0
242.19	0
217.48	0
209.39	0
211.73	0
221.00	0
203.11	0
214.71	0
224.19	0
238.04	0
238.36	0
246.24	0
259.87	0
249.97	0
266.48	0
282.98	0
306.31	0
301.73	1
314.62	1
332.62	1
355.51	1
370.32	1
408.13	1
433.58	1
440.51	1
386.29	1
342.84	1
254.97	1
203.42	1
170.09	1
174.03	1
167.85	1
177.01	1
188.19	1
211.20	1
240.91	1
230.26	1
251.25	1
241.66	1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58192&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58192&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58192&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 47.471123246113 + 29.2155921501706X[t] + 8.03850118189862M1[t] + 10.4251146884086M2[t] + 15.7017281949185M3[t] + 18.4533417014284M4[t] + 24.8059552079383M5[t] + 30.4325687144482M6[t] + 31.6191822209582M7[t] + 28.1407957274681M8[t] + 20.6054092339780M9[t] + 16.2785054481103M10[t] + 8.97400784350905M11[t] + 1.75338649349008t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Y[t] =  +  47.471123246113 +  29.2155921501706X[t] +  8.03850118189862M1[t] +  10.4251146884086M2[t] +  15.7017281949185M3[t] +  18.4533417014284M4[t] +  24.8059552079383M5[t] +  30.4325687144482M6[t] +  31.6191822209582M7[t] +  28.1407957274681M8[t] +  20.6054092339780M9[t] +  16.2785054481103M10[t] +  8.97400784350905M11[t] +  1.75338649349008t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58192&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Y[t] =  +  47.471123246113 +  29.2155921501706X[t] +  8.03850118189862M1[t] +  10.4251146884086M2[t] +  15.7017281949185M3[t] +  18.4533417014284M4[t] +  24.8059552079383M5[t] +  30.4325687144482M6[t] +  31.6191822209582M7[t] +  28.1407957274681M8[t] +  20.6054092339780M9[t] +  16.2785054481103M10[t] +  8.97400784350905M11[t] +  1.75338649349008t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58192&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58192&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 47.471123246113 + 29.2155921501706X[t] + 8.03850118189862M1[t] + 10.4251146884086M2[t] + 15.7017281949185M3[t] + 18.4533417014284M4[t] + 24.8059552079383M5[t] + 30.4325687144482M6[t] + 31.6191822209582M7[t] + 28.1407957274681M8[t] + 20.6054092339780M9[t] + 16.2785054481103M10[t] + 8.97400784350905M11[t] + 1.75338649349008t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)47.47112324611318.7093492.53730.012670.006335
X29.215592150170615.9316361.83380.069570.034785
M18.0385011818986222.6074770.35560.7228910.361446
M210.425114688408622.6026930.46120.6456040.322802
M315.701728194918522.5994070.69480.4887540.244377
M418.453341701428422.597620.81660.4160390.208019
M524.805955207938322.5973331.09770.2748780.137439
M630.432568714448222.5985451.34670.1810450.090523
M731.619182220958222.6012561.3990.1648170.082408
M828.140795727468122.6054651.24490.2160060.108003
M920.605409233978022.6111730.91130.3642690.182134
M1016.278505448110323.2341010.70060.4851140.242557
M118.9740078435090523.2414520.38610.7002040.350102
t1.753386493490080.1840739.525500

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 47.471123246113 & 18.709349 & 2.5373 & 0.01267 & 0.006335 \tabularnewline
X & 29.2155921501706 & 15.931636 & 1.8338 & 0.06957 & 0.034785 \tabularnewline
M1 & 8.03850118189862 & 22.607477 & 0.3556 & 0.722891 & 0.361446 \tabularnewline
M2 & 10.4251146884086 & 22.602693 & 0.4612 & 0.645604 & 0.322802 \tabularnewline
M3 & 15.7017281949185 & 22.599407 & 0.6948 & 0.488754 & 0.244377 \tabularnewline
M4 & 18.4533417014284 & 22.59762 & 0.8166 & 0.416039 & 0.208019 \tabularnewline
M5 & 24.8059552079383 & 22.597333 & 1.0977 & 0.274878 & 0.137439 \tabularnewline
M6 & 30.4325687144482 & 22.598545 & 1.3467 & 0.181045 & 0.090523 \tabularnewline
M7 & 31.6191822209582 & 22.601256 & 1.399 & 0.164817 & 0.082408 \tabularnewline
M8 & 28.1407957274681 & 22.605465 & 1.2449 & 0.216006 & 0.108003 \tabularnewline
M9 & 20.6054092339780 & 22.611173 & 0.9113 & 0.364269 & 0.182134 \tabularnewline
M10 & 16.2785054481103 & 23.234101 & 0.7006 & 0.485114 & 0.242557 \tabularnewline
M11 & 8.97400784350905 & 23.241452 & 0.3861 & 0.700204 & 0.350102 \tabularnewline
t & 1.75338649349008 & 0.184073 & 9.5255 & 0 & 0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58192&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]47.471123246113[/C][C]18.709349[/C][C]2.5373[/C][C]0.01267[/C][C]0.006335[/C][/ROW]
[ROW][C]X[/C][C]29.2155921501706[/C][C]15.931636[/C][C]1.8338[/C][C]0.06957[/C][C]0.034785[/C][/ROW]
[ROW][C]M1[/C][C]8.03850118189862[/C][C]22.607477[/C][C]0.3556[/C][C]0.722891[/C][C]0.361446[/C][/ROW]
[ROW][C]M2[/C][C]10.4251146884086[/C][C]22.602693[/C][C]0.4612[/C][C]0.645604[/C][C]0.322802[/C][/ROW]
[ROW][C]M3[/C][C]15.7017281949185[/C][C]22.599407[/C][C]0.6948[/C][C]0.488754[/C][C]0.244377[/C][/ROW]
[ROW][C]M4[/C][C]18.4533417014284[/C][C]22.59762[/C][C]0.8166[/C][C]0.416039[/C][C]0.208019[/C][/ROW]
[ROW][C]M5[/C][C]24.8059552079383[/C][C]22.597333[/C][C]1.0977[/C][C]0.274878[/C][C]0.137439[/C][/ROW]
[ROW][C]M6[/C][C]30.4325687144482[/C][C]22.598545[/C][C]1.3467[/C][C]0.181045[/C][C]0.090523[/C][/ROW]
[ROW][C]M7[/C][C]31.6191822209582[/C][C]22.601256[/C][C]1.399[/C][C]0.164817[/C][C]0.082408[/C][/ROW]
[ROW][C]M8[/C][C]28.1407957274681[/C][C]22.605465[/C][C]1.2449[/C][C]0.216006[/C][C]0.108003[/C][/ROW]
[ROW][C]M9[/C][C]20.6054092339780[/C][C]22.611173[/C][C]0.9113[/C][C]0.364269[/C][C]0.182134[/C][/ROW]
[ROW][C]M10[/C][C]16.2785054481103[/C][C]23.234101[/C][C]0.7006[/C][C]0.485114[/C][C]0.242557[/C][/ROW]
[ROW][C]M11[/C][C]8.97400784350905[/C][C]23.241452[/C][C]0.3861[/C][C]0.700204[/C][C]0.350102[/C][/ROW]
[ROW][C]t[/C][C]1.75338649349008[/C][C]0.184073[/C][C]9.5255[/C][C]0[/C][C]0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58192&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58192&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)47.47112324611318.7093492.53730.012670.006335
X29.215592150170615.9316361.83380.069570.034785
M18.0385011818986222.6074770.35560.7228910.361446
M210.425114688408622.6026930.46120.6456040.322802
M315.701728194918522.5994070.69480.4887540.244377
M418.453341701428422.597620.81660.4160390.208019
M524.805955207938322.5973331.09770.2748780.137439
M630.432568714448222.5985451.34670.1810450.090523
M731.619182220958222.6012561.3990.1648170.082408
M828.140795727468122.6054651.24490.2160060.108003
M920.605409233978022.6111730.91130.3642690.182134
M1016.278505448110323.2341010.70060.4851140.242557
M118.9740078435090523.2414520.38610.7002040.350102
t1.753386493490080.1840739.525500







Multiple Linear Regression - Regression Statistics
Multiple R0.82910426940108
R-squared0.687413889539099
Adjusted R-squared0.647961273655685
F-TEST (value)17.4237848149399
F-TEST (DF numerator)13
F-TEST (DF denominator)103
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation49.1780861158411
Sum Squared Residuals249103.867863759

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.82910426940108 \tabularnewline
R-squared & 0.687413889539099 \tabularnewline
Adjusted R-squared & 0.647961273655685 \tabularnewline
F-TEST (value) & 17.4237848149399 \tabularnewline
F-TEST (DF numerator) & 13 \tabularnewline
F-TEST (DF denominator) & 103 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 49.1780861158411 \tabularnewline
Sum Squared Residuals & 249103.867863759 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58192&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.82910426940108[/C][/ROW]
[ROW][C]R-squared[/C][C]0.687413889539099[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.647961273655685[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]17.4237848149399[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]13[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]103[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]49.1780861158411[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]249103.867863759[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58192&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58192&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.82910426940108
R-squared0.687413889539099
Adjusted R-squared0.647961273655685
F-TEST (value)17.4237848149399
F-TEST (DF numerator)13
F-TEST (DF denominator)103
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation49.1780861158411
Sum Squared Residuals249103.867863759







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1100.0157.263010921501842.7469890784982
2103.8461.403010921501442.4369890784986
3104.4868.433010921501836.0469890784982
495.4372.938010921501622.4919890784984
5104.881.044010921501723.7559890784983
6108.6488.424010921501720.2159890784983
7105.6591.364010921501714.2859890784983
8108.4289.639010921501718.7809890784983
9115.3583.857010921501731.4929890784983
10113.6481.28349362912432.356506370876
11115.2475.732382518012939.5076174819871
12100.3368.51176116799431.818238832006
13101.2978.303648843382622.9863511566174
14104.4882.443648843382822.0363511566172
1599.2689.47364884338269.78635115661737
16100.1193.97864884338266.13135115661735
17103.52102.0846488433831.43535115661736
18101.18109.464648843383-8.28464884338262
1996.39112.404648843383-16.0146488433826
2097.56110.679648843383-13.1196488433827
2196.39104.897648843383-8.50764884338265
2285.1102.324131551005-17.2241315510050
2379.7796.7730204398938-17.0030204398938
2479.1389.5523990898749-10.4223990898749
2580.8499.3442867652635-18.5042867652635
2682.75103.484286765264-20.7342867652636
2792.55110.514286765264-17.9642867652636
2896.6115.019286765264-18.4192867652636
2996.92123.125286765264-26.2052867652636
3095.32130.505286765264-35.1852867652635
3198.52133.445286765264-34.9252867652636
32100.22131.720286765264-31.5002867652636
33104.91125.938286765264-21.0282867652636
34103.1123.364769472886-20.2647694728859
3597.13117.813658361775-20.6836583617748
36103.42110.593037011756-7.17303701175578
37111.72120.384924687144-8.66492468714446
38118.11124.524924687145-6.41492468714453
39111.62131.554924687144-19.9349246871445
40100.22136.059924687144-35.8399246871445
41102.03144.165924687144-42.1359246871445
42105.76151.545924687144-45.7859246871445
43107.68154.485924687144-46.8059246871445
44110.77152.760924687144-41.9909246871445
45105.44146.978924687144-41.5389246871445
46112.26144.405407394767-32.1454073947668
47114.07138.854296283656-24.7842962836557
48117.9131.633674933637-13.7336749336367
49124.72141.425562609025-16.7055626090254
50126.42145.565562609025-19.1455626090255
51134.73152.595562609025-17.8655626090254
52135.79157.100562609025-21.3105626090254
53143.36165.206562609025-21.8465626090254
54140.37172.586562609025-32.2165626090254
55144.74175.526562609025-30.7865626090254
56151.98173.801562609025-21.8215626090254
57150.92168.019562609025-17.0995626090254
58163.38165.446045316648-2.06604531664770
59154.43159.894934205537-5.4649342055366
60146.66152.674312855518-6.01431285551764
61157.95162.466200530906-4.51620053090632
62162.1166.606200530906-4.50620053090638
63180.42173.6362005309066.78379946909365
64179.57178.1412005309061.42879946909366
65171.58186.247200530906-14.6672005309063
66185.43193.627200530906-8.19720053090631
67190.64196.567200530906-5.92720053090635
68203194.8422005309068.15779946909364
69202.36189.06020053090613.2997994690937
70193.41186.4866832385296.92331676147138
71186.17180.9355721274185.23442787258247
72192.24173.71495077739918.5250492226014
73209.6183.50683845278726.0931615472128
74206.41187.64683845278718.7631615472127
75209.82194.67683845278715.1431615472127
76230.37199.18183845278731.1881615472127
77235.8207.28783845278728.5121615472128
78232.07214.66783845278717.4021615472127
79244.64217.60783845278727.0321615472127
80242.19215.88283845278726.3071615472128
81217.48210.1008384527877.37916154721275
82209.39207.5273211604101.86267883959044
83211.73201.9762100492989.75378995070157
84221194.75558869927926.2444113007205
85203.11204.547476374668-1.43747637466814
86214.71208.6874763746686.02252362533179
87224.19215.7174763746688.47252362533183
88238.04220.22247637466817.8175236253318
89238.36228.32847637466810.0315236253318
90246.24235.70847637466810.5315236253318
91259.87238.64847637466821.2215236253318
92249.97236.92347637466813.0465236253318
93266.48231.14147637466835.3385236253318
94282.98228.56795908229054.4120409177096
95306.31223.01684797117983.2931520288207
96301.73245.01181877133156.718181228669
97314.62254.80370644672059.8162935532803
98332.62258.94370644672073.6762935532802
99355.51265.97370644672089.5362935532803
100370.32270.47870644672099.8412935532803
101408.13278.58470644672129.545293553280
102433.58285.96470644672147.615293553280
103440.51288.90470644672151.605293553280
104386.29287.1797064467299.1102935532803
105342.84281.3977064467261.4422935532802
106254.97278.824189154342-23.8541891543421
107203.42273.273078043231-69.853078043231
108170.09266.052456693212-95.962456693212
109174.03275.844344368601-101.814344368601
110167.85279.984344368601-112.134344368601
111177.01287.014344368601-110.004344368601
112188.19291.519344368601-103.329344368601
113211.2299.625344368601-88.4253443686007
114240.91307.005344368601-66.0953443686007
115230.26309.945344368601-79.6853443686007
116251.25308.220344368601-56.9703443686007
117241.66302.438344368601-60.7783443686007

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 100.01 & 57.2630109215018 & 42.7469890784982 \tabularnewline
2 & 103.84 & 61.4030109215014 & 42.4369890784986 \tabularnewline
3 & 104.48 & 68.4330109215018 & 36.0469890784982 \tabularnewline
4 & 95.43 & 72.9380109215016 & 22.4919890784984 \tabularnewline
5 & 104.8 & 81.0440109215017 & 23.7559890784983 \tabularnewline
6 & 108.64 & 88.4240109215017 & 20.2159890784983 \tabularnewline
7 & 105.65 & 91.3640109215017 & 14.2859890784983 \tabularnewline
8 & 108.42 & 89.6390109215017 & 18.7809890784983 \tabularnewline
9 & 115.35 & 83.8570109215017 & 31.4929890784983 \tabularnewline
10 & 113.64 & 81.283493629124 & 32.356506370876 \tabularnewline
11 & 115.24 & 75.7323825180129 & 39.5076174819871 \tabularnewline
12 & 100.33 & 68.511761167994 & 31.818238832006 \tabularnewline
13 & 101.29 & 78.3036488433826 & 22.9863511566174 \tabularnewline
14 & 104.48 & 82.4436488433828 & 22.0363511566172 \tabularnewline
15 & 99.26 & 89.4736488433826 & 9.78635115661737 \tabularnewline
16 & 100.11 & 93.9786488433826 & 6.13135115661735 \tabularnewline
17 & 103.52 & 102.084648843383 & 1.43535115661736 \tabularnewline
18 & 101.18 & 109.464648843383 & -8.28464884338262 \tabularnewline
19 & 96.39 & 112.404648843383 & -16.0146488433826 \tabularnewline
20 & 97.56 & 110.679648843383 & -13.1196488433827 \tabularnewline
21 & 96.39 & 104.897648843383 & -8.50764884338265 \tabularnewline
22 & 85.1 & 102.324131551005 & -17.2241315510050 \tabularnewline
23 & 79.77 & 96.7730204398938 & -17.0030204398938 \tabularnewline
24 & 79.13 & 89.5523990898749 & -10.4223990898749 \tabularnewline
25 & 80.84 & 99.3442867652635 & -18.5042867652635 \tabularnewline
26 & 82.75 & 103.484286765264 & -20.7342867652636 \tabularnewline
27 & 92.55 & 110.514286765264 & -17.9642867652636 \tabularnewline
28 & 96.6 & 115.019286765264 & -18.4192867652636 \tabularnewline
29 & 96.92 & 123.125286765264 & -26.2052867652636 \tabularnewline
30 & 95.32 & 130.505286765264 & -35.1852867652635 \tabularnewline
31 & 98.52 & 133.445286765264 & -34.9252867652636 \tabularnewline
32 & 100.22 & 131.720286765264 & -31.5002867652636 \tabularnewline
33 & 104.91 & 125.938286765264 & -21.0282867652636 \tabularnewline
34 & 103.1 & 123.364769472886 & -20.2647694728859 \tabularnewline
35 & 97.13 & 117.813658361775 & -20.6836583617748 \tabularnewline
36 & 103.42 & 110.593037011756 & -7.17303701175578 \tabularnewline
37 & 111.72 & 120.384924687144 & -8.66492468714446 \tabularnewline
38 & 118.11 & 124.524924687145 & -6.41492468714453 \tabularnewline
39 & 111.62 & 131.554924687144 & -19.9349246871445 \tabularnewline
40 & 100.22 & 136.059924687144 & -35.8399246871445 \tabularnewline
41 & 102.03 & 144.165924687144 & -42.1359246871445 \tabularnewline
42 & 105.76 & 151.545924687144 & -45.7859246871445 \tabularnewline
43 & 107.68 & 154.485924687144 & -46.8059246871445 \tabularnewline
44 & 110.77 & 152.760924687144 & -41.9909246871445 \tabularnewline
45 & 105.44 & 146.978924687144 & -41.5389246871445 \tabularnewline
46 & 112.26 & 144.405407394767 & -32.1454073947668 \tabularnewline
47 & 114.07 & 138.854296283656 & -24.7842962836557 \tabularnewline
48 & 117.9 & 131.633674933637 & -13.7336749336367 \tabularnewline
49 & 124.72 & 141.425562609025 & -16.7055626090254 \tabularnewline
50 & 126.42 & 145.565562609025 & -19.1455626090255 \tabularnewline
51 & 134.73 & 152.595562609025 & -17.8655626090254 \tabularnewline
52 & 135.79 & 157.100562609025 & -21.3105626090254 \tabularnewline
53 & 143.36 & 165.206562609025 & -21.8465626090254 \tabularnewline
54 & 140.37 & 172.586562609025 & -32.2165626090254 \tabularnewline
55 & 144.74 & 175.526562609025 & -30.7865626090254 \tabularnewline
56 & 151.98 & 173.801562609025 & -21.8215626090254 \tabularnewline
57 & 150.92 & 168.019562609025 & -17.0995626090254 \tabularnewline
58 & 163.38 & 165.446045316648 & -2.06604531664770 \tabularnewline
59 & 154.43 & 159.894934205537 & -5.4649342055366 \tabularnewline
60 & 146.66 & 152.674312855518 & -6.01431285551764 \tabularnewline
61 & 157.95 & 162.466200530906 & -4.51620053090632 \tabularnewline
62 & 162.1 & 166.606200530906 & -4.50620053090638 \tabularnewline
63 & 180.42 & 173.636200530906 & 6.78379946909365 \tabularnewline
64 & 179.57 & 178.141200530906 & 1.42879946909366 \tabularnewline
65 & 171.58 & 186.247200530906 & -14.6672005309063 \tabularnewline
66 & 185.43 & 193.627200530906 & -8.19720053090631 \tabularnewline
67 & 190.64 & 196.567200530906 & -5.92720053090635 \tabularnewline
68 & 203 & 194.842200530906 & 8.15779946909364 \tabularnewline
69 & 202.36 & 189.060200530906 & 13.2997994690937 \tabularnewline
70 & 193.41 & 186.486683238529 & 6.92331676147138 \tabularnewline
71 & 186.17 & 180.935572127418 & 5.23442787258247 \tabularnewline
72 & 192.24 & 173.714950777399 & 18.5250492226014 \tabularnewline
73 & 209.6 & 183.506838452787 & 26.0931615472128 \tabularnewline
74 & 206.41 & 187.646838452787 & 18.7631615472127 \tabularnewline
75 & 209.82 & 194.676838452787 & 15.1431615472127 \tabularnewline
76 & 230.37 & 199.181838452787 & 31.1881615472127 \tabularnewline
77 & 235.8 & 207.287838452787 & 28.5121615472128 \tabularnewline
78 & 232.07 & 214.667838452787 & 17.4021615472127 \tabularnewline
79 & 244.64 & 217.607838452787 & 27.0321615472127 \tabularnewline
80 & 242.19 & 215.882838452787 & 26.3071615472128 \tabularnewline
81 & 217.48 & 210.100838452787 & 7.37916154721275 \tabularnewline
82 & 209.39 & 207.527321160410 & 1.86267883959044 \tabularnewline
83 & 211.73 & 201.976210049298 & 9.75378995070157 \tabularnewline
84 & 221 & 194.755588699279 & 26.2444113007205 \tabularnewline
85 & 203.11 & 204.547476374668 & -1.43747637466814 \tabularnewline
86 & 214.71 & 208.687476374668 & 6.02252362533179 \tabularnewline
87 & 224.19 & 215.717476374668 & 8.47252362533183 \tabularnewline
88 & 238.04 & 220.222476374668 & 17.8175236253318 \tabularnewline
89 & 238.36 & 228.328476374668 & 10.0315236253318 \tabularnewline
90 & 246.24 & 235.708476374668 & 10.5315236253318 \tabularnewline
91 & 259.87 & 238.648476374668 & 21.2215236253318 \tabularnewline
92 & 249.97 & 236.923476374668 & 13.0465236253318 \tabularnewline
93 & 266.48 & 231.141476374668 & 35.3385236253318 \tabularnewline
94 & 282.98 & 228.567959082290 & 54.4120409177096 \tabularnewline
95 & 306.31 & 223.016847971179 & 83.2931520288207 \tabularnewline
96 & 301.73 & 245.011818771331 & 56.718181228669 \tabularnewline
97 & 314.62 & 254.803706446720 & 59.8162935532803 \tabularnewline
98 & 332.62 & 258.943706446720 & 73.6762935532802 \tabularnewline
99 & 355.51 & 265.973706446720 & 89.5362935532803 \tabularnewline
100 & 370.32 & 270.478706446720 & 99.8412935532803 \tabularnewline
101 & 408.13 & 278.58470644672 & 129.545293553280 \tabularnewline
102 & 433.58 & 285.96470644672 & 147.615293553280 \tabularnewline
103 & 440.51 & 288.90470644672 & 151.605293553280 \tabularnewline
104 & 386.29 & 287.17970644672 & 99.1102935532803 \tabularnewline
105 & 342.84 & 281.39770644672 & 61.4422935532802 \tabularnewline
106 & 254.97 & 278.824189154342 & -23.8541891543421 \tabularnewline
107 & 203.42 & 273.273078043231 & -69.853078043231 \tabularnewline
108 & 170.09 & 266.052456693212 & -95.962456693212 \tabularnewline
109 & 174.03 & 275.844344368601 & -101.814344368601 \tabularnewline
110 & 167.85 & 279.984344368601 & -112.134344368601 \tabularnewline
111 & 177.01 & 287.014344368601 & -110.004344368601 \tabularnewline
112 & 188.19 & 291.519344368601 & -103.329344368601 \tabularnewline
113 & 211.2 & 299.625344368601 & -88.4253443686007 \tabularnewline
114 & 240.91 & 307.005344368601 & -66.0953443686007 \tabularnewline
115 & 230.26 & 309.945344368601 & -79.6853443686007 \tabularnewline
116 & 251.25 & 308.220344368601 & -56.9703443686007 \tabularnewline
117 & 241.66 & 302.438344368601 & -60.7783443686007 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58192&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]100.01[/C][C]57.2630109215018[/C][C]42.7469890784982[/C][/ROW]
[ROW][C]2[/C][C]103.84[/C][C]61.4030109215014[/C][C]42.4369890784986[/C][/ROW]
[ROW][C]3[/C][C]104.48[/C][C]68.4330109215018[/C][C]36.0469890784982[/C][/ROW]
[ROW][C]4[/C][C]95.43[/C][C]72.9380109215016[/C][C]22.4919890784984[/C][/ROW]
[ROW][C]5[/C][C]104.8[/C][C]81.0440109215017[/C][C]23.7559890784983[/C][/ROW]
[ROW][C]6[/C][C]108.64[/C][C]88.4240109215017[/C][C]20.2159890784983[/C][/ROW]
[ROW][C]7[/C][C]105.65[/C][C]91.3640109215017[/C][C]14.2859890784983[/C][/ROW]
[ROW][C]8[/C][C]108.42[/C][C]89.6390109215017[/C][C]18.7809890784983[/C][/ROW]
[ROW][C]9[/C][C]115.35[/C][C]83.8570109215017[/C][C]31.4929890784983[/C][/ROW]
[ROW][C]10[/C][C]113.64[/C][C]81.283493629124[/C][C]32.356506370876[/C][/ROW]
[ROW][C]11[/C][C]115.24[/C][C]75.7323825180129[/C][C]39.5076174819871[/C][/ROW]
[ROW][C]12[/C][C]100.33[/C][C]68.511761167994[/C][C]31.818238832006[/C][/ROW]
[ROW][C]13[/C][C]101.29[/C][C]78.3036488433826[/C][C]22.9863511566174[/C][/ROW]
[ROW][C]14[/C][C]104.48[/C][C]82.4436488433828[/C][C]22.0363511566172[/C][/ROW]
[ROW][C]15[/C][C]99.26[/C][C]89.4736488433826[/C][C]9.78635115661737[/C][/ROW]
[ROW][C]16[/C][C]100.11[/C][C]93.9786488433826[/C][C]6.13135115661735[/C][/ROW]
[ROW][C]17[/C][C]103.52[/C][C]102.084648843383[/C][C]1.43535115661736[/C][/ROW]
[ROW][C]18[/C][C]101.18[/C][C]109.464648843383[/C][C]-8.28464884338262[/C][/ROW]
[ROW][C]19[/C][C]96.39[/C][C]112.404648843383[/C][C]-16.0146488433826[/C][/ROW]
[ROW][C]20[/C][C]97.56[/C][C]110.679648843383[/C][C]-13.1196488433827[/C][/ROW]
[ROW][C]21[/C][C]96.39[/C][C]104.897648843383[/C][C]-8.50764884338265[/C][/ROW]
[ROW][C]22[/C][C]85.1[/C][C]102.324131551005[/C][C]-17.2241315510050[/C][/ROW]
[ROW][C]23[/C][C]79.77[/C][C]96.7730204398938[/C][C]-17.0030204398938[/C][/ROW]
[ROW][C]24[/C][C]79.13[/C][C]89.5523990898749[/C][C]-10.4223990898749[/C][/ROW]
[ROW][C]25[/C][C]80.84[/C][C]99.3442867652635[/C][C]-18.5042867652635[/C][/ROW]
[ROW][C]26[/C][C]82.75[/C][C]103.484286765264[/C][C]-20.7342867652636[/C][/ROW]
[ROW][C]27[/C][C]92.55[/C][C]110.514286765264[/C][C]-17.9642867652636[/C][/ROW]
[ROW][C]28[/C][C]96.6[/C][C]115.019286765264[/C][C]-18.4192867652636[/C][/ROW]
[ROW][C]29[/C][C]96.92[/C][C]123.125286765264[/C][C]-26.2052867652636[/C][/ROW]
[ROW][C]30[/C][C]95.32[/C][C]130.505286765264[/C][C]-35.1852867652635[/C][/ROW]
[ROW][C]31[/C][C]98.52[/C][C]133.445286765264[/C][C]-34.9252867652636[/C][/ROW]
[ROW][C]32[/C][C]100.22[/C][C]131.720286765264[/C][C]-31.5002867652636[/C][/ROW]
[ROW][C]33[/C][C]104.91[/C][C]125.938286765264[/C][C]-21.0282867652636[/C][/ROW]
[ROW][C]34[/C][C]103.1[/C][C]123.364769472886[/C][C]-20.2647694728859[/C][/ROW]
[ROW][C]35[/C][C]97.13[/C][C]117.813658361775[/C][C]-20.6836583617748[/C][/ROW]
[ROW][C]36[/C][C]103.42[/C][C]110.593037011756[/C][C]-7.17303701175578[/C][/ROW]
[ROW][C]37[/C][C]111.72[/C][C]120.384924687144[/C][C]-8.66492468714446[/C][/ROW]
[ROW][C]38[/C][C]118.11[/C][C]124.524924687145[/C][C]-6.41492468714453[/C][/ROW]
[ROW][C]39[/C][C]111.62[/C][C]131.554924687144[/C][C]-19.9349246871445[/C][/ROW]
[ROW][C]40[/C][C]100.22[/C][C]136.059924687144[/C][C]-35.8399246871445[/C][/ROW]
[ROW][C]41[/C][C]102.03[/C][C]144.165924687144[/C][C]-42.1359246871445[/C][/ROW]
[ROW][C]42[/C][C]105.76[/C][C]151.545924687144[/C][C]-45.7859246871445[/C][/ROW]
[ROW][C]43[/C][C]107.68[/C][C]154.485924687144[/C][C]-46.8059246871445[/C][/ROW]
[ROW][C]44[/C][C]110.77[/C][C]152.760924687144[/C][C]-41.9909246871445[/C][/ROW]
[ROW][C]45[/C][C]105.44[/C][C]146.978924687144[/C][C]-41.5389246871445[/C][/ROW]
[ROW][C]46[/C][C]112.26[/C][C]144.405407394767[/C][C]-32.1454073947668[/C][/ROW]
[ROW][C]47[/C][C]114.07[/C][C]138.854296283656[/C][C]-24.7842962836557[/C][/ROW]
[ROW][C]48[/C][C]117.9[/C][C]131.633674933637[/C][C]-13.7336749336367[/C][/ROW]
[ROW][C]49[/C][C]124.72[/C][C]141.425562609025[/C][C]-16.7055626090254[/C][/ROW]
[ROW][C]50[/C][C]126.42[/C][C]145.565562609025[/C][C]-19.1455626090255[/C][/ROW]
[ROW][C]51[/C][C]134.73[/C][C]152.595562609025[/C][C]-17.8655626090254[/C][/ROW]
[ROW][C]52[/C][C]135.79[/C][C]157.100562609025[/C][C]-21.3105626090254[/C][/ROW]
[ROW][C]53[/C][C]143.36[/C][C]165.206562609025[/C][C]-21.8465626090254[/C][/ROW]
[ROW][C]54[/C][C]140.37[/C][C]172.586562609025[/C][C]-32.2165626090254[/C][/ROW]
[ROW][C]55[/C][C]144.74[/C][C]175.526562609025[/C][C]-30.7865626090254[/C][/ROW]
[ROW][C]56[/C][C]151.98[/C][C]173.801562609025[/C][C]-21.8215626090254[/C][/ROW]
[ROW][C]57[/C][C]150.92[/C][C]168.019562609025[/C][C]-17.0995626090254[/C][/ROW]
[ROW][C]58[/C][C]163.38[/C][C]165.446045316648[/C][C]-2.06604531664770[/C][/ROW]
[ROW][C]59[/C][C]154.43[/C][C]159.894934205537[/C][C]-5.4649342055366[/C][/ROW]
[ROW][C]60[/C][C]146.66[/C][C]152.674312855518[/C][C]-6.01431285551764[/C][/ROW]
[ROW][C]61[/C][C]157.95[/C][C]162.466200530906[/C][C]-4.51620053090632[/C][/ROW]
[ROW][C]62[/C][C]162.1[/C][C]166.606200530906[/C][C]-4.50620053090638[/C][/ROW]
[ROW][C]63[/C][C]180.42[/C][C]173.636200530906[/C][C]6.78379946909365[/C][/ROW]
[ROW][C]64[/C][C]179.57[/C][C]178.141200530906[/C][C]1.42879946909366[/C][/ROW]
[ROW][C]65[/C][C]171.58[/C][C]186.247200530906[/C][C]-14.6672005309063[/C][/ROW]
[ROW][C]66[/C][C]185.43[/C][C]193.627200530906[/C][C]-8.19720053090631[/C][/ROW]
[ROW][C]67[/C][C]190.64[/C][C]196.567200530906[/C][C]-5.92720053090635[/C][/ROW]
[ROW][C]68[/C][C]203[/C][C]194.842200530906[/C][C]8.15779946909364[/C][/ROW]
[ROW][C]69[/C][C]202.36[/C][C]189.060200530906[/C][C]13.2997994690937[/C][/ROW]
[ROW][C]70[/C][C]193.41[/C][C]186.486683238529[/C][C]6.92331676147138[/C][/ROW]
[ROW][C]71[/C][C]186.17[/C][C]180.935572127418[/C][C]5.23442787258247[/C][/ROW]
[ROW][C]72[/C][C]192.24[/C][C]173.714950777399[/C][C]18.5250492226014[/C][/ROW]
[ROW][C]73[/C][C]209.6[/C][C]183.506838452787[/C][C]26.0931615472128[/C][/ROW]
[ROW][C]74[/C][C]206.41[/C][C]187.646838452787[/C][C]18.7631615472127[/C][/ROW]
[ROW][C]75[/C][C]209.82[/C][C]194.676838452787[/C][C]15.1431615472127[/C][/ROW]
[ROW][C]76[/C][C]230.37[/C][C]199.181838452787[/C][C]31.1881615472127[/C][/ROW]
[ROW][C]77[/C][C]235.8[/C][C]207.287838452787[/C][C]28.5121615472128[/C][/ROW]
[ROW][C]78[/C][C]232.07[/C][C]214.667838452787[/C][C]17.4021615472127[/C][/ROW]
[ROW][C]79[/C][C]244.64[/C][C]217.607838452787[/C][C]27.0321615472127[/C][/ROW]
[ROW][C]80[/C][C]242.19[/C][C]215.882838452787[/C][C]26.3071615472128[/C][/ROW]
[ROW][C]81[/C][C]217.48[/C][C]210.100838452787[/C][C]7.37916154721275[/C][/ROW]
[ROW][C]82[/C][C]209.39[/C][C]207.527321160410[/C][C]1.86267883959044[/C][/ROW]
[ROW][C]83[/C][C]211.73[/C][C]201.976210049298[/C][C]9.75378995070157[/C][/ROW]
[ROW][C]84[/C][C]221[/C][C]194.755588699279[/C][C]26.2444113007205[/C][/ROW]
[ROW][C]85[/C][C]203.11[/C][C]204.547476374668[/C][C]-1.43747637466814[/C][/ROW]
[ROW][C]86[/C][C]214.71[/C][C]208.687476374668[/C][C]6.02252362533179[/C][/ROW]
[ROW][C]87[/C][C]224.19[/C][C]215.717476374668[/C][C]8.47252362533183[/C][/ROW]
[ROW][C]88[/C][C]238.04[/C][C]220.222476374668[/C][C]17.8175236253318[/C][/ROW]
[ROW][C]89[/C][C]238.36[/C][C]228.328476374668[/C][C]10.0315236253318[/C][/ROW]
[ROW][C]90[/C][C]246.24[/C][C]235.708476374668[/C][C]10.5315236253318[/C][/ROW]
[ROW][C]91[/C][C]259.87[/C][C]238.648476374668[/C][C]21.2215236253318[/C][/ROW]
[ROW][C]92[/C][C]249.97[/C][C]236.923476374668[/C][C]13.0465236253318[/C][/ROW]
[ROW][C]93[/C][C]266.48[/C][C]231.141476374668[/C][C]35.3385236253318[/C][/ROW]
[ROW][C]94[/C][C]282.98[/C][C]228.567959082290[/C][C]54.4120409177096[/C][/ROW]
[ROW][C]95[/C][C]306.31[/C][C]223.016847971179[/C][C]83.2931520288207[/C][/ROW]
[ROW][C]96[/C][C]301.73[/C][C]245.011818771331[/C][C]56.718181228669[/C][/ROW]
[ROW][C]97[/C][C]314.62[/C][C]254.803706446720[/C][C]59.8162935532803[/C][/ROW]
[ROW][C]98[/C][C]332.62[/C][C]258.943706446720[/C][C]73.6762935532802[/C][/ROW]
[ROW][C]99[/C][C]355.51[/C][C]265.973706446720[/C][C]89.5362935532803[/C][/ROW]
[ROW][C]100[/C][C]370.32[/C][C]270.478706446720[/C][C]99.8412935532803[/C][/ROW]
[ROW][C]101[/C][C]408.13[/C][C]278.58470644672[/C][C]129.545293553280[/C][/ROW]
[ROW][C]102[/C][C]433.58[/C][C]285.96470644672[/C][C]147.615293553280[/C][/ROW]
[ROW][C]103[/C][C]440.51[/C][C]288.90470644672[/C][C]151.605293553280[/C][/ROW]
[ROW][C]104[/C][C]386.29[/C][C]287.17970644672[/C][C]99.1102935532803[/C][/ROW]
[ROW][C]105[/C][C]342.84[/C][C]281.39770644672[/C][C]61.4422935532802[/C][/ROW]
[ROW][C]106[/C][C]254.97[/C][C]278.824189154342[/C][C]-23.8541891543421[/C][/ROW]
[ROW][C]107[/C][C]203.42[/C][C]273.273078043231[/C][C]-69.853078043231[/C][/ROW]
[ROW][C]108[/C][C]170.09[/C][C]266.052456693212[/C][C]-95.962456693212[/C][/ROW]
[ROW][C]109[/C][C]174.03[/C][C]275.844344368601[/C][C]-101.814344368601[/C][/ROW]
[ROW][C]110[/C][C]167.85[/C][C]279.984344368601[/C][C]-112.134344368601[/C][/ROW]
[ROW][C]111[/C][C]177.01[/C][C]287.014344368601[/C][C]-110.004344368601[/C][/ROW]
[ROW][C]112[/C][C]188.19[/C][C]291.519344368601[/C][C]-103.329344368601[/C][/ROW]
[ROW][C]113[/C][C]211.2[/C][C]299.625344368601[/C][C]-88.4253443686007[/C][/ROW]
[ROW][C]114[/C][C]240.91[/C][C]307.005344368601[/C][C]-66.0953443686007[/C][/ROW]
[ROW][C]115[/C][C]230.26[/C][C]309.945344368601[/C][C]-79.6853443686007[/C][/ROW]
[ROW][C]116[/C][C]251.25[/C][C]308.220344368601[/C][C]-56.9703443686007[/C][/ROW]
[ROW][C]117[/C][C]241.66[/C][C]302.438344368601[/C][C]-60.7783443686007[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58192&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58192&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1100.0157.263010921501842.7469890784982
2103.8461.403010921501442.4369890784986
3104.4868.433010921501836.0469890784982
495.4372.938010921501622.4919890784984
5104.881.044010921501723.7559890784983
6108.6488.424010921501720.2159890784983
7105.6591.364010921501714.2859890784983
8108.4289.639010921501718.7809890784983
9115.3583.857010921501731.4929890784983
10113.6481.28349362912432.356506370876
11115.2475.732382518012939.5076174819871
12100.3368.51176116799431.818238832006
13101.2978.303648843382622.9863511566174
14104.4882.443648843382822.0363511566172
1599.2689.47364884338269.78635115661737
16100.1193.97864884338266.13135115661735
17103.52102.0846488433831.43535115661736
18101.18109.464648843383-8.28464884338262
1996.39112.404648843383-16.0146488433826
2097.56110.679648843383-13.1196488433827
2196.39104.897648843383-8.50764884338265
2285.1102.324131551005-17.2241315510050
2379.7796.7730204398938-17.0030204398938
2479.1389.5523990898749-10.4223990898749
2580.8499.3442867652635-18.5042867652635
2682.75103.484286765264-20.7342867652636
2792.55110.514286765264-17.9642867652636
2896.6115.019286765264-18.4192867652636
2996.92123.125286765264-26.2052867652636
3095.32130.505286765264-35.1852867652635
3198.52133.445286765264-34.9252867652636
32100.22131.720286765264-31.5002867652636
33104.91125.938286765264-21.0282867652636
34103.1123.364769472886-20.2647694728859
3597.13117.813658361775-20.6836583617748
36103.42110.593037011756-7.17303701175578
37111.72120.384924687144-8.66492468714446
38118.11124.524924687145-6.41492468714453
39111.62131.554924687144-19.9349246871445
40100.22136.059924687144-35.8399246871445
41102.03144.165924687144-42.1359246871445
42105.76151.545924687144-45.7859246871445
43107.68154.485924687144-46.8059246871445
44110.77152.760924687144-41.9909246871445
45105.44146.978924687144-41.5389246871445
46112.26144.405407394767-32.1454073947668
47114.07138.854296283656-24.7842962836557
48117.9131.633674933637-13.7336749336367
49124.72141.425562609025-16.7055626090254
50126.42145.565562609025-19.1455626090255
51134.73152.595562609025-17.8655626090254
52135.79157.100562609025-21.3105626090254
53143.36165.206562609025-21.8465626090254
54140.37172.586562609025-32.2165626090254
55144.74175.526562609025-30.7865626090254
56151.98173.801562609025-21.8215626090254
57150.92168.019562609025-17.0995626090254
58163.38165.446045316648-2.06604531664770
59154.43159.894934205537-5.4649342055366
60146.66152.674312855518-6.01431285551764
61157.95162.466200530906-4.51620053090632
62162.1166.606200530906-4.50620053090638
63180.42173.6362005309066.78379946909365
64179.57178.1412005309061.42879946909366
65171.58186.247200530906-14.6672005309063
66185.43193.627200530906-8.19720053090631
67190.64196.567200530906-5.92720053090635
68203194.8422005309068.15779946909364
69202.36189.06020053090613.2997994690937
70193.41186.4866832385296.92331676147138
71186.17180.9355721274185.23442787258247
72192.24173.71495077739918.5250492226014
73209.6183.50683845278726.0931615472128
74206.41187.64683845278718.7631615472127
75209.82194.67683845278715.1431615472127
76230.37199.18183845278731.1881615472127
77235.8207.28783845278728.5121615472128
78232.07214.66783845278717.4021615472127
79244.64217.60783845278727.0321615472127
80242.19215.88283845278726.3071615472128
81217.48210.1008384527877.37916154721275
82209.39207.5273211604101.86267883959044
83211.73201.9762100492989.75378995070157
84221194.75558869927926.2444113007205
85203.11204.547476374668-1.43747637466814
86214.71208.6874763746686.02252362533179
87224.19215.7174763746688.47252362533183
88238.04220.22247637466817.8175236253318
89238.36228.32847637466810.0315236253318
90246.24235.70847637466810.5315236253318
91259.87238.64847637466821.2215236253318
92249.97236.92347637466813.0465236253318
93266.48231.14147637466835.3385236253318
94282.98228.56795908229054.4120409177096
95306.31223.01684797117983.2931520288207
96301.73245.01181877133156.718181228669
97314.62254.80370644672059.8162935532803
98332.62258.94370644672073.6762935532802
99355.51265.97370644672089.5362935532803
100370.32270.47870644672099.8412935532803
101408.13278.58470644672129.545293553280
102433.58285.96470644672147.615293553280
103440.51288.90470644672151.605293553280
104386.29287.1797064467299.1102935532803
105342.84281.3977064467261.4422935532802
106254.97278.824189154342-23.8541891543421
107203.42273.273078043231-69.853078043231
108170.09266.052456693212-95.962456693212
109174.03275.844344368601-101.814344368601
110167.85279.984344368601-112.134344368601
111177.01287.014344368601-110.004344368601
112188.19291.519344368601-103.329344368601
113211.2299.625344368601-88.4253443686007
114240.91307.005344368601-66.0953443686007
115230.26309.945344368601-79.6853443686007
116251.25308.220344368601-56.9703443686007
117241.66302.438344368601-60.7783443686007







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.0002744357320452880.0005488714640905760.999725564267955
184.56351542180012e-059.12703084360024e-050.999954364845782
197.97251293144967e-061.59450258628993e-050.999992027487069
201.46627834597354e-062.93255669194708e-060.999998533721654
211.15894958300442e-062.31789916600884e-060.999998841050417
222.23395829906392e-064.46791659812783e-060.9999977660417
233.62575293254753e-067.25150586509505e-060.999996374247067
248.3507134585288e-071.67014269170576e-060.999999164928654
251.41006894240002e-072.82013788480004e-070.999999858993106
262.3473061863232e-084.6946123726464e-080.999999976526938
274.69234905624935e-099.3846981124987e-090.99999999530765
281.78166766397197e-093.56333532794395e-090.999999998218332
293.35716477220309e-106.71432954440617e-100.999999999664284
305.39253076050422e-111.07850615210084e-100.999999999946075
311.31515389333556e-112.63030778667113e-110.999999999986849
322.85612006558114e-125.71224013116228e-120.999999999997144
336.7122422994813e-131.34244845989626e-120.999999999999329
342.383381794753e-134.766763589506e-130.999999999999762
354.99473028280626e-149.98946056561252e-140.99999999999995
365.81390115915307e-141.16278023183061e-130.999999999999942
371.45086669253644e-132.90173338507287e-130.999999999999855
382.66258535816818e-135.32517071633636e-130.999999999999734
391.07664687666786e-132.15329375333572e-130.999999999999892
402.18339443086272e-144.36678886172544e-140.999999999999978
414.17473788040758e-158.34947576081516e-150.999999999999996
428.95158320562925e-161.79031664112585e-151
432.26142220583709e-164.52284441167417e-161
445.78393912593834e-171.15678782518767e-161
451.08088894302196e-172.16177788604391e-171
463.10145538010868e-186.20291076021736e-181
471.28053798966470e-182.56107597932940e-181
481.02229840148895e-182.04459680297790e-181
499.03835324941757e-191.80767064988351e-181
504.73554254443513e-199.47108508887027e-191
515.90284583743365e-191.18056916748673e-181
521.06309076366634e-182.12618152733269e-181
532.22582565382329e-184.45165130764658e-181
542.51453061830056e-185.02906123660112e-181
554.32544597199891e-188.65089194399782e-181
569.34677257035783e-181.86935451407157e-171
571.16029251890089e-172.32058503780177e-171
584.70455430969171e-179.40910861938343e-171
596.47087971969078e-171.29417594393816e-161
604.25762382359724e-178.51524764719448e-171
613.1949867275225e-176.389973455045e-171
622.26502340451146e-174.53004680902293e-171
635.4936819069854e-171.09873638139708e-161
641.34198046833590e-162.68396093667179e-161
651.60201829192070e-163.20403658384140e-161
665.42507736824333e-161.08501547364867e-151
672.86324180675846e-155.72648361351691e-150.999999999999997
681.94459292182849e-143.88918584365698e-140.99999999999998
698.50181412539746e-141.70036282507949e-130.999999999999915
701.84491284437922e-133.68982568875843e-130.999999999999815
714.23992432527825e-138.47984865055649e-130.999999999999576
724.66926665911313e-139.33853331822626e-130.999999999999533
735.65914716072277e-131.13182943214455e-120.999999999999434
744.93719390967793e-139.87438781935585e-130.999999999999506
754.74622760678002e-139.49245521356004e-130.999999999999525
761.30782940530446e-122.61565881060892e-120.999999999998692
775.08310163718688e-121.01662032743738e-110.999999999994917
783.2024736795388e-116.4049473590776e-110.999999999967975
793.81877395603373e-107.63754791206745e-100.999999999618123
803.59399590826126e-097.18799181652252e-090.999999996406004
811.03675906267600e-072.07351812535201e-070.999999896324094
821.50480090936069e-063.00960181872138e-060.99999849519909
832.89383185352590e-055.78766370705181e-050.999971061681465
841.78851971396527e-053.57703942793055e-050.99998211480286
858.99001916723703e-061.79800383344741e-050.999991009980833
864.25132766164832e-068.50265532329663e-060.999995748672338
872.10241885470461e-064.20483770940923e-060.999997897581145
881.16302185079410e-062.32604370158820e-060.99999883697815
891.22619193211801e-062.45238386423603e-060.999998773808068
905.39590701415312e-061.07918140283062e-050.999994604092986
914.42258707027308e-058.84517414054617e-050.999955774129297
920.002120176733420800.004240353466841610.997879823266579
930.2983136902881610.5966273805763210.701686309711839
940.4290103407560110.8580206815120220.570989659243989
950.4101783831270360.8203567662540720.589821616872964
960.3804111815163130.7608223630326250.619588818483688
970.3249482168521130.6498964337042270.675051783147887
980.2240347590414030.4480695180828070.775965240958597
990.1423876111270180.2847752222540370.857612388872982
1000.08261619935294770.1652323987058950.917383800647052

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
17 & 0.000274435732045288 & 0.000548871464090576 & 0.999725564267955 \tabularnewline
18 & 4.56351542180012e-05 & 9.12703084360024e-05 & 0.999954364845782 \tabularnewline
19 & 7.97251293144967e-06 & 1.59450258628993e-05 & 0.999992027487069 \tabularnewline
20 & 1.46627834597354e-06 & 2.93255669194708e-06 & 0.999998533721654 \tabularnewline
21 & 1.15894958300442e-06 & 2.31789916600884e-06 & 0.999998841050417 \tabularnewline
22 & 2.23395829906392e-06 & 4.46791659812783e-06 & 0.9999977660417 \tabularnewline
23 & 3.62575293254753e-06 & 7.25150586509505e-06 & 0.999996374247067 \tabularnewline
24 & 8.3507134585288e-07 & 1.67014269170576e-06 & 0.999999164928654 \tabularnewline
25 & 1.41006894240002e-07 & 2.82013788480004e-07 & 0.999999858993106 \tabularnewline
26 & 2.3473061863232e-08 & 4.6946123726464e-08 & 0.999999976526938 \tabularnewline
27 & 4.69234905624935e-09 & 9.3846981124987e-09 & 0.99999999530765 \tabularnewline
28 & 1.78166766397197e-09 & 3.56333532794395e-09 & 0.999999998218332 \tabularnewline
29 & 3.35716477220309e-10 & 6.71432954440617e-10 & 0.999999999664284 \tabularnewline
30 & 5.39253076050422e-11 & 1.07850615210084e-10 & 0.999999999946075 \tabularnewline
31 & 1.31515389333556e-11 & 2.63030778667113e-11 & 0.999999999986849 \tabularnewline
32 & 2.85612006558114e-12 & 5.71224013116228e-12 & 0.999999999997144 \tabularnewline
33 & 6.7122422994813e-13 & 1.34244845989626e-12 & 0.999999999999329 \tabularnewline
34 & 2.383381794753e-13 & 4.766763589506e-13 & 0.999999999999762 \tabularnewline
35 & 4.99473028280626e-14 & 9.98946056561252e-14 & 0.99999999999995 \tabularnewline
36 & 5.81390115915307e-14 & 1.16278023183061e-13 & 0.999999999999942 \tabularnewline
37 & 1.45086669253644e-13 & 2.90173338507287e-13 & 0.999999999999855 \tabularnewline
38 & 2.66258535816818e-13 & 5.32517071633636e-13 & 0.999999999999734 \tabularnewline
39 & 1.07664687666786e-13 & 2.15329375333572e-13 & 0.999999999999892 \tabularnewline
40 & 2.18339443086272e-14 & 4.36678886172544e-14 & 0.999999999999978 \tabularnewline
41 & 4.17473788040758e-15 & 8.34947576081516e-15 & 0.999999999999996 \tabularnewline
42 & 8.95158320562925e-16 & 1.79031664112585e-15 & 1 \tabularnewline
43 & 2.26142220583709e-16 & 4.52284441167417e-16 & 1 \tabularnewline
44 & 5.78393912593834e-17 & 1.15678782518767e-16 & 1 \tabularnewline
45 & 1.08088894302196e-17 & 2.16177788604391e-17 & 1 \tabularnewline
46 & 3.10145538010868e-18 & 6.20291076021736e-18 & 1 \tabularnewline
47 & 1.28053798966470e-18 & 2.56107597932940e-18 & 1 \tabularnewline
48 & 1.02229840148895e-18 & 2.04459680297790e-18 & 1 \tabularnewline
49 & 9.03835324941757e-19 & 1.80767064988351e-18 & 1 \tabularnewline
50 & 4.73554254443513e-19 & 9.47108508887027e-19 & 1 \tabularnewline
51 & 5.90284583743365e-19 & 1.18056916748673e-18 & 1 \tabularnewline
52 & 1.06309076366634e-18 & 2.12618152733269e-18 & 1 \tabularnewline
53 & 2.22582565382329e-18 & 4.45165130764658e-18 & 1 \tabularnewline
54 & 2.51453061830056e-18 & 5.02906123660112e-18 & 1 \tabularnewline
55 & 4.32544597199891e-18 & 8.65089194399782e-18 & 1 \tabularnewline
56 & 9.34677257035783e-18 & 1.86935451407157e-17 & 1 \tabularnewline
57 & 1.16029251890089e-17 & 2.32058503780177e-17 & 1 \tabularnewline
58 & 4.70455430969171e-17 & 9.40910861938343e-17 & 1 \tabularnewline
59 & 6.47087971969078e-17 & 1.29417594393816e-16 & 1 \tabularnewline
60 & 4.25762382359724e-17 & 8.51524764719448e-17 & 1 \tabularnewline
61 & 3.1949867275225e-17 & 6.389973455045e-17 & 1 \tabularnewline
62 & 2.26502340451146e-17 & 4.53004680902293e-17 & 1 \tabularnewline
63 & 5.4936819069854e-17 & 1.09873638139708e-16 & 1 \tabularnewline
64 & 1.34198046833590e-16 & 2.68396093667179e-16 & 1 \tabularnewline
65 & 1.60201829192070e-16 & 3.20403658384140e-16 & 1 \tabularnewline
66 & 5.42507736824333e-16 & 1.08501547364867e-15 & 1 \tabularnewline
67 & 2.86324180675846e-15 & 5.72648361351691e-15 & 0.999999999999997 \tabularnewline
68 & 1.94459292182849e-14 & 3.88918584365698e-14 & 0.99999999999998 \tabularnewline
69 & 8.50181412539746e-14 & 1.70036282507949e-13 & 0.999999999999915 \tabularnewline
70 & 1.84491284437922e-13 & 3.68982568875843e-13 & 0.999999999999815 \tabularnewline
71 & 4.23992432527825e-13 & 8.47984865055649e-13 & 0.999999999999576 \tabularnewline
72 & 4.66926665911313e-13 & 9.33853331822626e-13 & 0.999999999999533 \tabularnewline
73 & 5.65914716072277e-13 & 1.13182943214455e-12 & 0.999999999999434 \tabularnewline
74 & 4.93719390967793e-13 & 9.87438781935585e-13 & 0.999999999999506 \tabularnewline
75 & 4.74622760678002e-13 & 9.49245521356004e-13 & 0.999999999999525 \tabularnewline
76 & 1.30782940530446e-12 & 2.61565881060892e-12 & 0.999999999998692 \tabularnewline
77 & 5.08310163718688e-12 & 1.01662032743738e-11 & 0.999999999994917 \tabularnewline
78 & 3.2024736795388e-11 & 6.4049473590776e-11 & 0.999999999967975 \tabularnewline
79 & 3.81877395603373e-10 & 7.63754791206745e-10 & 0.999999999618123 \tabularnewline
80 & 3.59399590826126e-09 & 7.18799181652252e-09 & 0.999999996406004 \tabularnewline
81 & 1.03675906267600e-07 & 2.07351812535201e-07 & 0.999999896324094 \tabularnewline
82 & 1.50480090936069e-06 & 3.00960181872138e-06 & 0.99999849519909 \tabularnewline
83 & 2.89383185352590e-05 & 5.78766370705181e-05 & 0.999971061681465 \tabularnewline
84 & 1.78851971396527e-05 & 3.57703942793055e-05 & 0.99998211480286 \tabularnewline
85 & 8.99001916723703e-06 & 1.79800383344741e-05 & 0.999991009980833 \tabularnewline
86 & 4.25132766164832e-06 & 8.50265532329663e-06 & 0.999995748672338 \tabularnewline
87 & 2.10241885470461e-06 & 4.20483770940923e-06 & 0.999997897581145 \tabularnewline
88 & 1.16302185079410e-06 & 2.32604370158820e-06 & 0.99999883697815 \tabularnewline
89 & 1.22619193211801e-06 & 2.45238386423603e-06 & 0.999998773808068 \tabularnewline
90 & 5.39590701415312e-06 & 1.07918140283062e-05 & 0.999994604092986 \tabularnewline
91 & 4.42258707027308e-05 & 8.84517414054617e-05 & 0.999955774129297 \tabularnewline
92 & 0.00212017673342080 & 0.00424035346684161 & 0.997879823266579 \tabularnewline
93 & 0.298313690288161 & 0.596627380576321 & 0.701686309711839 \tabularnewline
94 & 0.429010340756011 & 0.858020681512022 & 0.570989659243989 \tabularnewline
95 & 0.410178383127036 & 0.820356766254072 & 0.589821616872964 \tabularnewline
96 & 0.380411181516313 & 0.760822363032625 & 0.619588818483688 \tabularnewline
97 & 0.324948216852113 & 0.649896433704227 & 0.675051783147887 \tabularnewline
98 & 0.224034759041403 & 0.448069518082807 & 0.775965240958597 \tabularnewline
99 & 0.142387611127018 & 0.284775222254037 & 0.857612388872982 \tabularnewline
100 & 0.0826161993529477 & 0.165232398705895 & 0.917383800647052 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58192&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]17[/C][C]0.000274435732045288[/C][C]0.000548871464090576[/C][C]0.999725564267955[/C][/ROW]
[ROW][C]18[/C][C]4.56351542180012e-05[/C][C]9.12703084360024e-05[/C][C]0.999954364845782[/C][/ROW]
[ROW][C]19[/C][C]7.97251293144967e-06[/C][C]1.59450258628993e-05[/C][C]0.999992027487069[/C][/ROW]
[ROW][C]20[/C][C]1.46627834597354e-06[/C][C]2.93255669194708e-06[/C][C]0.999998533721654[/C][/ROW]
[ROW][C]21[/C][C]1.15894958300442e-06[/C][C]2.31789916600884e-06[/C][C]0.999998841050417[/C][/ROW]
[ROW][C]22[/C][C]2.23395829906392e-06[/C][C]4.46791659812783e-06[/C][C]0.9999977660417[/C][/ROW]
[ROW][C]23[/C][C]3.62575293254753e-06[/C][C]7.25150586509505e-06[/C][C]0.999996374247067[/C][/ROW]
[ROW][C]24[/C][C]8.3507134585288e-07[/C][C]1.67014269170576e-06[/C][C]0.999999164928654[/C][/ROW]
[ROW][C]25[/C][C]1.41006894240002e-07[/C][C]2.82013788480004e-07[/C][C]0.999999858993106[/C][/ROW]
[ROW][C]26[/C][C]2.3473061863232e-08[/C][C]4.6946123726464e-08[/C][C]0.999999976526938[/C][/ROW]
[ROW][C]27[/C][C]4.69234905624935e-09[/C][C]9.3846981124987e-09[/C][C]0.99999999530765[/C][/ROW]
[ROW][C]28[/C][C]1.78166766397197e-09[/C][C]3.56333532794395e-09[/C][C]0.999999998218332[/C][/ROW]
[ROW][C]29[/C][C]3.35716477220309e-10[/C][C]6.71432954440617e-10[/C][C]0.999999999664284[/C][/ROW]
[ROW][C]30[/C][C]5.39253076050422e-11[/C][C]1.07850615210084e-10[/C][C]0.999999999946075[/C][/ROW]
[ROW][C]31[/C][C]1.31515389333556e-11[/C][C]2.63030778667113e-11[/C][C]0.999999999986849[/C][/ROW]
[ROW][C]32[/C][C]2.85612006558114e-12[/C][C]5.71224013116228e-12[/C][C]0.999999999997144[/C][/ROW]
[ROW][C]33[/C][C]6.7122422994813e-13[/C][C]1.34244845989626e-12[/C][C]0.999999999999329[/C][/ROW]
[ROW][C]34[/C][C]2.383381794753e-13[/C][C]4.766763589506e-13[/C][C]0.999999999999762[/C][/ROW]
[ROW][C]35[/C][C]4.99473028280626e-14[/C][C]9.98946056561252e-14[/C][C]0.99999999999995[/C][/ROW]
[ROW][C]36[/C][C]5.81390115915307e-14[/C][C]1.16278023183061e-13[/C][C]0.999999999999942[/C][/ROW]
[ROW][C]37[/C][C]1.45086669253644e-13[/C][C]2.90173338507287e-13[/C][C]0.999999999999855[/C][/ROW]
[ROW][C]38[/C][C]2.66258535816818e-13[/C][C]5.32517071633636e-13[/C][C]0.999999999999734[/C][/ROW]
[ROW][C]39[/C][C]1.07664687666786e-13[/C][C]2.15329375333572e-13[/C][C]0.999999999999892[/C][/ROW]
[ROW][C]40[/C][C]2.18339443086272e-14[/C][C]4.36678886172544e-14[/C][C]0.999999999999978[/C][/ROW]
[ROW][C]41[/C][C]4.17473788040758e-15[/C][C]8.34947576081516e-15[/C][C]0.999999999999996[/C][/ROW]
[ROW][C]42[/C][C]8.95158320562925e-16[/C][C]1.79031664112585e-15[/C][C]1[/C][/ROW]
[ROW][C]43[/C][C]2.26142220583709e-16[/C][C]4.52284441167417e-16[/C][C]1[/C][/ROW]
[ROW][C]44[/C][C]5.78393912593834e-17[/C][C]1.15678782518767e-16[/C][C]1[/C][/ROW]
[ROW][C]45[/C][C]1.08088894302196e-17[/C][C]2.16177788604391e-17[/C][C]1[/C][/ROW]
[ROW][C]46[/C][C]3.10145538010868e-18[/C][C]6.20291076021736e-18[/C][C]1[/C][/ROW]
[ROW][C]47[/C][C]1.28053798966470e-18[/C][C]2.56107597932940e-18[/C][C]1[/C][/ROW]
[ROW][C]48[/C][C]1.02229840148895e-18[/C][C]2.04459680297790e-18[/C][C]1[/C][/ROW]
[ROW][C]49[/C][C]9.03835324941757e-19[/C][C]1.80767064988351e-18[/C][C]1[/C][/ROW]
[ROW][C]50[/C][C]4.73554254443513e-19[/C][C]9.47108508887027e-19[/C][C]1[/C][/ROW]
[ROW][C]51[/C][C]5.90284583743365e-19[/C][C]1.18056916748673e-18[/C][C]1[/C][/ROW]
[ROW][C]52[/C][C]1.06309076366634e-18[/C][C]2.12618152733269e-18[/C][C]1[/C][/ROW]
[ROW][C]53[/C][C]2.22582565382329e-18[/C][C]4.45165130764658e-18[/C][C]1[/C][/ROW]
[ROW][C]54[/C][C]2.51453061830056e-18[/C][C]5.02906123660112e-18[/C][C]1[/C][/ROW]
[ROW][C]55[/C][C]4.32544597199891e-18[/C][C]8.65089194399782e-18[/C][C]1[/C][/ROW]
[ROW][C]56[/C][C]9.34677257035783e-18[/C][C]1.86935451407157e-17[/C][C]1[/C][/ROW]
[ROW][C]57[/C][C]1.16029251890089e-17[/C][C]2.32058503780177e-17[/C][C]1[/C][/ROW]
[ROW][C]58[/C][C]4.70455430969171e-17[/C][C]9.40910861938343e-17[/C][C]1[/C][/ROW]
[ROW][C]59[/C][C]6.47087971969078e-17[/C][C]1.29417594393816e-16[/C][C]1[/C][/ROW]
[ROW][C]60[/C][C]4.25762382359724e-17[/C][C]8.51524764719448e-17[/C][C]1[/C][/ROW]
[ROW][C]61[/C][C]3.1949867275225e-17[/C][C]6.389973455045e-17[/C][C]1[/C][/ROW]
[ROW][C]62[/C][C]2.26502340451146e-17[/C][C]4.53004680902293e-17[/C][C]1[/C][/ROW]
[ROW][C]63[/C][C]5.4936819069854e-17[/C][C]1.09873638139708e-16[/C][C]1[/C][/ROW]
[ROW][C]64[/C][C]1.34198046833590e-16[/C][C]2.68396093667179e-16[/C][C]1[/C][/ROW]
[ROW][C]65[/C][C]1.60201829192070e-16[/C][C]3.20403658384140e-16[/C][C]1[/C][/ROW]
[ROW][C]66[/C][C]5.42507736824333e-16[/C][C]1.08501547364867e-15[/C][C]1[/C][/ROW]
[ROW][C]67[/C][C]2.86324180675846e-15[/C][C]5.72648361351691e-15[/C][C]0.999999999999997[/C][/ROW]
[ROW][C]68[/C][C]1.94459292182849e-14[/C][C]3.88918584365698e-14[/C][C]0.99999999999998[/C][/ROW]
[ROW][C]69[/C][C]8.50181412539746e-14[/C][C]1.70036282507949e-13[/C][C]0.999999999999915[/C][/ROW]
[ROW][C]70[/C][C]1.84491284437922e-13[/C][C]3.68982568875843e-13[/C][C]0.999999999999815[/C][/ROW]
[ROW][C]71[/C][C]4.23992432527825e-13[/C][C]8.47984865055649e-13[/C][C]0.999999999999576[/C][/ROW]
[ROW][C]72[/C][C]4.66926665911313e-13[/C][C]9.33853331822626e-13[/C][C]0.999999999999533[/C][/ROW]
[ROW][C]73[/C][C]5.65914716072277e-13[/C][C]1.13182943214455e-12[/C][C]0.999999999999434[/C][/ROW]
[ROW][C]74[/C][C]4.93719390967793e-13[/C][C]9.87438781935585e-13[/C][C]0.999999999999506[/C][/ROW]
[ROW][C]75[/C][C]4.74622760678002e-13[/C][C]9.49245521356004e-13[/C][C]0.999999999999525[/C][/ROW]
[ROW][C]76[/C][C]1.30782940530446e-12[/C][C]2.61565881060892e-12[/C][C]0.999999999998692[/C][/ROW]
[ROW][C]77[/C][C]5.08310163718688e-12[/C][C]1.01662032743738e-11[/C][C]0.999999999994917[/C][/ROW]
[ROW][C]78[/C][C]3.2024736795388e-11[/C][C]6.4049473590776e-11[/C][C]0.999999999967975[/C][/ROW]
[ROW][C]79[/C][C]3.81877395603373e-10[/C][C]7.63754791206745e-10[/C][C]0.999999999618123[/C][/ROW]
[ROW][C]80[/C][C]3.59399590826126e-09[/C][C]7.18799181652252e-09[/C][C]0.999999996406004[/C][/ROW]
[ROW][C]81[/C][C]1.03675906267600e-07[/C][C]2.07351812535201e-07[/C][C]0.999999896324094[/C][/ROW]
[ROW][C]82[/C][C]1.50480090936069e-06[/C][C]3.00960181872138e-06[/C][C]0.99999849519909[/C][/ROW]
[ROW][C]83[/C][C]2.89383185352590e-05[/C][C]5.78766370705181e-05[/C][C]0.999971061681465[/C][/ROW]
[ROW][C]84[/C][C]1.78851971396527e-05[/C][C]3.57703942793055e-05[/C][C]0.99998211480286[/C][/ROW]
[ROW][C]85[/C][C]8.99001916723703e-06[/C][C]1.79800383344741e-05[/C][C]0.999991009980833[/C][/ROW]
[ROW][C]86[/C][C]4.25132766164832e-06[/C][C]8.50265532329663e-06[/C][C]0.999995748672338[/C][/ROW]
[ROW][C]87[/C][C]2.10241885470461e-06[/C][C]4.20483770940923e-06[/C][C]0.999997897581145[/C][/ROW]
[ROW][C]88[/C][C]1.16302185079410e-06[/C][C]2.32604370158820e-06[/C][C]0.99999883697815[/C][/ROW]
[ROW][C]89[/C][C]1.22619193211801e-06[/C][C]2.45238386423603e-06[/C][C]0.999998773808068[/C][/ROW]
[ROW][C]90[/C][C]5.39590701415312e-06[/C][C]1.07918140283062e-05[/C][C]0.999994604092986[/C][/ROW]
[ROW][C]91[/C][C]4.42258707027308e-05[/C][C]8.84517414054617e-05[/C][C]0.999955774129297[/C][/ROW]
[ROW][C]92[/C][C]0.00212017673342080[/C][C]0.00424035346684161[/C][C]0.997879823266579[/C][/ROW]
[ROW][C]93[/C][C]0.298313690288161[/C][C]0.596627380576321[/C][C]0.701686309711839[/C][/ROW]
[ROW][C]94[/C][C]0.429010340756011[/C][C]0.858020681512022[/C][C]0.570989659243989[/C][/ROW]
[ROW][C]95[/C][C]0.410178383127036[/C][C]0.820356766254072[/C][C]0.589821616872964[/C][/ROW]
[ROW][C]96[/C][C]0.380411181516313[/C][C]0.760822363032625[/C][C]0.619588818483688[/C][/ROW]
[ROW][C]97[/C][C]0.324948216852113[/C][C]0.649896433704227[/C][C]0.675051783147887[/C][/ROW]
[ROW][C]98[/C][C]0.224034759041403[/C][C]0.448069518082807[/C][C]0.775965240958597[/C][/ROW]
[ROW][C]99[/C][C]0.142387611127018[/C][C]0.284775222254037[/C][C]0.857612388872982[/C][/ROW]
[ROW][C]100[/C][C]0.0826161993529477[/C][C]0.165232398705895[/C][C]0.917383800647052[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58192&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58192&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.0002744357320452880.0005488714640905760.999725564267955
184.56351542180012e-059.12703084360024e-050.999954364845782
197.97251293144967e-061.59450258628993e-050.999992027487069
201.46627834597354e-062.93255669194708e-060.999998533721654
211.15894958300442e-062.31789916600884e-060.999998841050417
222.23395829906392e-064.46791659812783e-060.9999977660417
233.62575293254753e-067.25150586509505e-060.999996374247067
248.3507134585288e-071.67014269170576e-060.999999164928654
251.41006894240002e-072.82013788480004e-070.999999858993106
262.3473061863232e-084.6946123726464e-080.999999976526938
274.69234905624935e-099.3846981124987e-090.99999999530765
281.78166766397197e-093.56333532794395e-090.999999998218332
293.35716477220309e-106.71432954440617e-100.999999999664284
305.39253076050422e-111.07850615210084e-100.999999999946075
311.31515389333556e-112.63030778667113e-110.999999999986849
322.85612006558114e-125.71224013116228e-120.999999999997144
336.7122422994813e-131.34244845989626e-120.999999999999329
342.383381794753e-134.766763589506e-130.999999999999762
354.99473028280626e-149.98946056561252e-140.99999999999995
365.81390115915307e-141.16278023183061e-130.999999999999942
371.45086669253644e-132.90173338507287e-130.999999999999855
382.66258535816818e-135.32517071633636e-130.999999999999734
391.07664687666786e-132.15329375333572e-130.999999999999892
402.18339443086272e-144.36678886172544e-140.999999999999978
414.17473788040758e-158.34947576081516e-150.999999999999996
428.95158320562925e-161.79031664112585e-151
432.26142220583709e-164.52284441167417e-161
445.78393912593834e-171.15678782518767e-161
451.08088894302196e-172.16177788604391e-171
463.10145538010868e-186.20291076021736e-181
471.28053798966470e-182.56107597932940e-181
481.02229840148895e-182.04459680297790e-181
499.03835324941757e-191.80767064988351e-181
504.73554254443513e-199.47108508887027e-191
515.90284583743365e-191.18056916748673e-181
521.06309076366634e-182.12618152733269e-181
532.22582565382329e-184.45165130764658e-181
542.51453061830056e-185.02906123660112e-181
554.32544597199891e-188.65089194399782e-181
569.34677257035783e-181.86935451407157e-171
571.16029251890089e-172.32058503780177e-171
584.70455430969171e-179.40910861938343e-171
596.47087971969078e-171.29417594393816e-161
604.25762382359724e-178.51524764719448e-171
613.1949867275225e-176.389973455045e-171
622.26502340451146e-174.53004680902293e-171
635.4936819069854e-171.09873638139708e-161
641.34198046833590e-162.68396093667179e-161
651.60201829192070e-163.20403658384140e-161
665.42507736824333e-161.08501547364867e-151
672.86324180675846e-155.72648361351691e-150.999999999999997
681.94459292182849e-143.88918584365698e-140.99999999999998
698.50181412539746e-141.70036282507949e-130.999999999999915
701.84491284437922e-133.68982568875843e-130.999999999999815
714.23992432527825e-138.47984865055649e-130.999999999999576
724.66926665911313e-139.33853331822626e-130.999999999999533
735.65914716072277e-131.13182943214455e-120.999999999999434
744.93719390967793e-139.87438781935585e-130.999999999999506
754.74622760678002e-139.49245521356004e-130.999999999999525
761.30782940530446e-122.61565881060892e-120.999999999998692
775.08310163718688e-121.01662032743738e-110.999999999994917
783.2024736795388e-116.4049473590776e-110.999999999967975
793.81877395603373e-107.63754791206745e-100.999999999618123
803.59399590826126e-097.18799181652252e-090.999999996406004
811.03675906267600e-072.07351812535201e-070.999999896324094
821.50480090936069e-063.00960181872138e-060.99999849519909
832.89383185352590e-055.78766370705181e-050.999971061681465
841.78851971396527e-053.57703942793055e-050.99998211480286
858.99001916723703e-061.79800383344741e-050.999991009980833
864.25132766164832e-068.50265532329663e-060.999995748672338
872.10241885470461e-064.20483770940923e-060.999997897581145
881.16302185079410e-062.32604370158820e-060.99999883697815
891.22619193211801e-062.45238386423603e-060.999998773808068
905.39590701415312e-061.07918140283062e-050.999994604092986
914.42258707027308e-058.84517414054617e-050.999955774129297
920.002120176733420800.004240353466841610.997879823266579
930.2983136902881610.5966273805763210.701686309711839
940.4290103407560110.8580206815120220.570989659243989
950.4101783831270360.8203567662540720.589821616872964
960.3804111815163130.7608223630326250.619588818483688
970.3249482168521130.6498964337042270.675051783147887
980.2240347590414030.4480695180828070.775965240958597
990.1423876111270180.2847752222540370.857612388872982
1000.08261619935294770.1652323987058950.917383800647052







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level760.904761904761905NOK
5% type I error level760.904761904761905NOK
10% type I error level760.904761904761905NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 76 & 0.904761904761905 & NOK \tabularnewline
5% type I error level & 76 & 0.904761904761905 & NOK \tabularnewline
10% type I error level & 76 & 0.904761904761905 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=58192&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]76[/C][C]0.904761904761905[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]76[/C][C]0.904761904761905[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]76[/C][C]0.904761904761905[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=58192&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=58192&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level760.904761904761905NOK
5% type I error level760.904761904761905NOK
10% type I error level760.904761904761905NOK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}