Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_smp.wasp
Title produced by softwareStandard Deviation-Mean Plot
Date of computationFri, 27 Nov 2009 10:50:36 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/27/t12593443361d8uvtuasd40ow3.htm/, Retrieved Sat, 21 Dec 2024 14:11:53 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=61057, Retrieved Sat, 21 Dec 2024 14:11:53 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact224
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Explorative Data Analysis] [Run Sequence gebo...] [2008-12-12 13:32:37] [76963dc1903f0f612b6153510a3818cf]
- R  D  [Univariate Explorative Data Analysis] [Run Sequence gebo...] [2008-12-17 12:14:40] [76963dc1903f0f612b6153510a3818cf]
-         [Univariate Explorative Data Analysis] [Run Sequence Plot...] [2008-12-22 18:19:51] [1ce0d16c8f4225c977b42c8fa93bc163]
- RMP       [Standard Deviation-Mean Plot] [Identifying Integ...] [2009-11-22 12:50:05] [b98453cac15ba1066b407e146608df68]
F    D        [Standard Deviation-Mean Plot] [SHW WS8] [2009-11-24 12:14:58] [253127ae8da904b75450fbd69fe4eb21]
-   PD            [Standard Deviation-Mean Plot] [ws8 deel 4] [2009-11-27 17:50:36] [95523ebdb89b97dbf680ec91e0b4bca2] [Current]
-   PD              [Standard Deviation-Mean Plot] [verb ws8] [2009-12-03 19:32:48] [95cead3ebb75668735f848316249436a]
-   PD              [Standard Deviation-Mean Plot] [verb ws8] [2009-12-04 17:00:39] [95cead3ebb75668735f848316249436a]
Feedback Forum

Post a new message
Dataseries X:
2.05
2.11
2.09
2.05
2.08
2.06
2.06
2.08
2.07
2.06
2.07
2.06
2.09
2.07
2.09
2.28
2.33
2.35
2.52
2.63
2.58
2.70
2.81
2.97
3.04
3.28
3.33
3.50
3.56
3.57
3.69
3.82
3.79
3.96
4.06
4.05
4.03
3.94
4.02
3.88
4.02
4.03
4.09
3.99
4.01
4.01
4.19
4.30
4.27
3.82
3.15
2.49
1.81
1.26
1.06
0.84
0.78
0.70
0.36
0.35




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=61057&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=61057&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=61057&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
12.070.01758098145983060.06
22.451666666666670.2974996816906880.9
33.63750.319207114297571.02
44.04250.1101342156395800.42
51.740833333333331.369316075693093.92

\begin{tabular}{lllllllll}
\hline
Standard Deviation-Mean Plot \tabularnewline
Section & Mean & Standard Deviation & Range \tabularnewline
1 & 2.07 & 0.0175809814598306 & 0.06 \tabularnewline
2 & 2.45166666666667 & 0.297499681690688 & 0.9 \tabularnewline
3 & 3.6375 & 0.31920711429757 & 1.02 \tabularnewline
4 & 4.0425 & 0.110134215639580 & 0.42 \tabularnewline
5 & 1.74083333333333 & 1.36931607569309 & 3.92 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=61057&T=1

[TABLE]
[ROW][C]Standard Deviation-Mean Plot[/C][/ROW]
[ROW][C]Section[/C][C]Mean[/C][C]Standard Deviation[/C][C]Range[/C][/ROW]
[ROW][C]1[/C][C]2.07[/C][C]0.0175809814598306[/C][C]0.06[/C][/ROW]
[ROW][C]2[/C][C]2.45166666666667[/C][C]0.297499681690688[/C][C]0.9[/C][/ROW]
[ROW][C]3[/C][C]3.6375[/C][C]0.31920711429757[/C][C]1.02[/C][/ROW]
[ROW][C]4[/C][C]4.0425[/C][C]0.110134215639580[/C][C]0.42[/C][/ROW]
[ROW][C]5[/C][C]1.74083333333333[/C][C]1.36931607569309[/C][C]3.92[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=61057&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=61057&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
12.070.01758098145983060.06
22.451666666666670.2974996816906880.9
33.63750.319207114297571.02
44.04250.1101342156395800.42
51.740833333333331.369316075693093.92







Regression: S.E.(k) = alpha + beta * Mean(k)
alpha1.21222293383171
beta-0.283118278671529
S.D.0.267330746370919
T-STAT-1.05905617859124
p-value0.367296350948444

\begin{tabular}{lllllllll}
\hline
Regression: S.E.(k) = alpha + beta * Mean(k) \tabularnewline
alpha & 1.21222293383171 \tabularnewline
beta & -0.283118278671529 \tabularnewline
S.D. & 0.267330746370919 \tabularnewline
T-STAT & -1.05905617859124 \tabularnewline
p-value & 0.367296350948444 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=61057&T=2

[TABLE]
[ROW][C]Regression: S.E.(k) = alpha + beta * Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]1.21222293383171[/C][/ROW]
[ROW][C]beta[/C][C]-0.283118278671529[/C][/ROW]
[ROW][C]S.D.[/C][C]0.267330746370919[/C][/ROW]
[ROW][C]T-STAT[/C][C]-1.05905617859124[/C][/ROW]
[ROW][C]p-value[/C][C]0.367296350948444[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=61057&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=61057&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: S.E.(k) = alpha + beta * Mean(k)
alpha1.21222293383171
beta-0.283118278671529
S.D.0.267330746370919
T-STAT-1.05905617859124
p-value0.367296350948444







Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha-1.01853634107347
beta-0.65633077359575
S.D.2.53999928097769
T-STAT-0.258398015507751
p-value0.812813404941676
Lambda1.65633077359575

\begin{tabular}{lllllllll}
\hline
Regression: ln S.E.(k) = alpha + beta * ln Mean(k) \tabularnewline
alpha & -1.01853634107347 \tabularnewline
beta & -0.65633077359575 \tabularnewline
S.D. & 2.53999928097769 \tabularnewline
T-STAT & -0.258398015507751 \tabularnewline
p-value & 0.812813404941676 \tabularnewline
Lambda & 1.65633077359575 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=61057&T=3

[TABLE]
[ROW][C]Regression: ln S.E.(k) = alpha + beta * ln Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]-1.01853634107347[/C][/ROW]
[ROW][C]beta[/C][C]-0.65633077359575[/C][/ROW]
[ROW][C]S.D.[/C][C]2.53999928097769[/C][/ROW]
[ROW][C]T-STAT[/C][C]-0.258398015507751[/C][/ROW]
[ROW][C]p-value[/C][C]0.812813404941676[/C][/ROW]
[ROW][C]Lambda[/C][C]1.65633077359575[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=61057&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=61057&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha-1.01853634107347
beta-0.65633077359575
S.D.2.53999928097769
T-STAT-0.258398015507751
p-value0.812813404941676
Lambda1.65633077359575



Parameters (Session):
par1 = 60 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
(n <- length(x))
(np <- floor(n / par1))
arr <- array(NA,dim=c(par1,np))
j <- 0
k <- 1
for (i in 1:(np*par1))
{
j = j + 1
arr[j,k] <- x[i]
if (j == par1) {
j = 0
k=k+1
}
}
arr
arr.mean <- array(NA,dim=np)
arr.sd <- array(NA,dim=np)
arr.range <- array(NA,dim=np)
for (j in 1:np)
{
arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE)
}
arr.mean
arr.sd
arr.range
(lm1 <- lm(arr.sd~arr.mean))
(lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
(lm2 <- lm(arr.range~arr.mean))
bitmap(file='test1.png')
plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
dev.off()
bitmap(file='test2.png')
plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Section',header=TRUE)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,'Standard Deviation',header=TRUE)
a<-table.element(a,'Range',header=TRUE)
a<-table.row.end(a)
for (j in 1:np) {
a<-table.row.start(a)
a<-table.element(a,j,header=TRUE)
a<-table.element(a,arr.mean[j])
a<-table.element(a,arr.sd[j] )
a<-table.element(a,arr.range[j] )
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lambda',header=TRUE)
a<-table.element(a,1-lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')