Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_regression_trees1.wasp
Title produced by softwareRecursive Partitioning (Regression Trees)
Date of computationSun, 12 Dec 2010 19:22:35 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Dec/12/t1292181633w85l847n8fwsebi.htm/, Retrieved Fri, 01 Nov 2024 00:13:05 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=108629, Retrieved Fri, 01 Nov 2024 00:13:05 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact217
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Recursive Partitioning (Regression Trees)] [] [2010-12-05 19:35:21] [b98453cac15ba1066b407e146608df68]
-   PD  [Recursive Partitioning (Regression Trees)] [RP cat2 personal ...] [2010-12-12 16:40:01] [b11c112f8986de933f8b95cd30e75cc2]
-           [Recursive Partitioning (Regression Trees)] [RP cat2 organisatie] [2010-12-12 19:22:35] [be034431ba35f7eb1ce695fc7ca4deb9] [Current]
Feedback Forum

Post a new message
Dataseries X:
1	26	9	15	6	25	25	13
1	20	9	15	6	25	24	16
1	21	9	14	13	19	21	19
0	31	14	10	8	18	23	15
1	21	8	10	7	18	17	14
1	18	8	12	9	22	19	13
1	26	11	18	5	29	18	19
1	22	10	12	8	26	27	15
1	22	9	14	9	25	23	14
1	29	15	18	11	23	23	15
0	15	14	9	8	23	29	16
1	16	11	11	11	23	21	16
0	24	14	11	12	24	26	16
1	17	6	17	8	30	25	17
0	19	20	8	7	19	25	15
0	22	9	16	9	24	23	15
1	31	10	21	12	32	26	20
0	28	8	24	20	30	20	18
1	38	11	21	7	29	29	16
0	26	14	14	8	17	24	16
1	25	11	7	8	25	23	19
1	25	16	18	16	26	24	16
0	29	14	18	10	26	30	17
1	28	11	13	6	25	22	17
0	15	11	11	8	23	22	16
1	18	12	13	9	21	13	15
0	21	9	13	9	19	24	14
1	25	7	18	11	35	17	15
0	23	13	14	12	19	24	12
1	23	10	12	8	20	21	14
1	19	9	9	7	21	23	16
0	18	9	12	8	21	24	14
0	18	13	8	9	24	24	7
0	26	16	5	4	23	24	10
0	18	12	10	8	19	23	14
1	18	6	11	8	17	26	16
0	28	14	11	8	24	24	16
0	17	14	12	6	15	21	16
1	29	10	12	8	25	23	14
0	12	4	15	4	27	28	20
1	28	12	16	14	27	22	14
1	20	14	14	10	18	24	11
1	17	9	17	9	25	21	15
1	17	9	13	6	22	23	16
0	20	10	10	8	26	23	14
1	31	14	17	11	23	20	16
0	21	10	12	8	16	23	14
0	19	9	13	8	27	21	12
1	23	14	13	10	25	27	16
0	15	8	11	8	14	12	9
1	24	9	13	10	19	15	14
1	28	8	12	7	20	22	16
1	16	9	12	8	16	21	16
0	19	9	12	7	18	21	15
1	21	9	9	9	22	20	16
0	21	15	7	5	21	24	12
0	20	8	17	7	22	24	16
1	16	10	12	7	22	29	16
1	25	8	12	7	32	25	14
1	30	14	9	9	23	14	16
0	29	11	9	5	31	30	17
1	22	10	13	8	18	19	18
0	19	12	10	8	23	29	18
1	33	14	11	8	26	25	12
0	17	9	12	9	24	25	16
0	9	13	10	6	19	25	10
1	14	15	13	8	14	16	14
1	15	8	6	6	20	25	18
0	12	7	7	4	22	28	18
0	21	10	13	6	24	24	16
1	20	10	11	4	25	25	16
1	29	13	18	12	21	21	16
0	33	11	9	6	28	22	13
0	21	8	9	11	24	20	16
0	15	12	11	8	20	25	16
0	19	9	11	10	21	27	20
1	23	10	15	10	23	21	16
0	20	11	8	4	13	13	15
1	20	11	11	8	24	26	15
1	18	10	14	9	21	26	16
0	31	16	14	9	21	25	14
1	18	16	12	7	17	22	15
1	13	8	12	7	14	19	12
1	9	6	8	11	29	23	17
1	20	11	11	8	25	25	16
1	18	12	10	8	16	15	15
1	23	14	17	7	25	21	13
1	17	9	16	5	25	23	16
1	17	11	13	7	21	25	16
1	16	8	15	9	23	24	16
0	31	8	11	8	22	24	16
0	15	7	12	6	19	21	14
1	28	16	16	8	24	24	16
0	26	13	20	10	26	22	16
1	20	8	16	10	25	24	20
0	19	11	11	8	20	28	15
1	25	14	15	11	22	21	16
0	18	10	15	8	14	17	13
1	20	10	12	8	20	28	17
0	33	14	9	6	32	24	16
1	24	14	24	20	21	10	12
1	22	10	15	6	22	20	16
1	32	12	18	12	28	22	16
1	31	9	17	9	25	19	17
0	13	16	12	5	17	22	13
1	18	8	15	10	21	22	12
0	17	9	11	5	23	26	18
1	29	16	11	6	27	24	14
1	22	13	15	10	22	22	14
1	18	13	12	6	19	20	13
1	22	8	14	10	20	20	16
1	25	14	11	5	17	15	13
1	20	11	20	13	24	20	16
1	20	9	11	7	21	20	13
0	17	8	12	9	21	24	16
1	26	13	12	8	24	29	16
0	10	10	11	5	19	23	15
1	15	8	10	4	22	24	17
1	20	7	11	9	26	22	15
1	14	11	12	7	17	16	12
0	16	11	9	5	17	23	16
0	23	14	8	5	19	27	10
1	11	6	6	4	15	16	16
0	19	10	12	7	17	21	14
1	30	9	15	9	27	26	15
0	21	12	13	8	19	22	13
0	20	11	17	8	21	23	15
1	22	14	14	11	25	19	11
1	30	12	16	10	19	18	12
0	25	14	15	9	22	24	8
0	23	14	11	10	20	29	15
1	23	8	11	10	15	22	17
0	21	11	16	7	20	24	16
1	30	12	15	10	29	22	10
1	22	9	14	6	19	12	18
0	32	16	9	6	29	26	13
1	22	11	13	11	24	18	15
0	15	11	11	8	23	22	16
1	21	12	14	9	22	24	16
1	27	15	11	9	23	21	14
1	22	13	12	13	22	15	10
1	9	6	8	11	29	23	17
1	20	7	11	9	26	22	15
1	16	8	13	5	21	24	16




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=108629&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=108629&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=108629&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'George Udny Yule' @ 72.249.76.132







Confusion Matrix (predicted in columns / actuals in rows)
C1C2
C15824
C22933

\begin{tabular}{lllllllll}
\hline
Confusion Matrix (predicted in columns / actuals in rows) \tabularnewline
 & C1 & C2 \tabularnewline
C1 & 58 & 24 \tabularnewline
C2 & 29 & 33 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=108629&T=1

[TABLE]
[ROW][C]Confusion Matrix (predicted in columns / actuals in rows)[/C][/ROW]
[ROW][C][/C][C]C1[/C][C]C2[/C][/ROW]
[ROW][C]C1[/C][C]58[/C][C]24[/C][/ROW]
[ROW][C]C2[/C][C]29[/C][C]33[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=108629&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=108629&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Confusion Matrix (predicted in columns / actuals in rows)
C1C2
C15824
C22933



Parameters (Session):
par1 = 6 ; par2 = quantiles ; par3 = 2 ; par4 = no ;
Parameters (R input):
par1 = 7 ; par2 = quantiles ; par3 = 2 ; par4 = no ;
R code (references can be found in the software module):
library(party)
library(Hmisc)
par1 <- as.numeric(par1)
par3 <- as.numeric(par3)
x <- data.frame(t(y))
is.data.frame(x)
x <- x[!is.na(x[,par1]),]
k <- length(x[1,])
n <- length(x[,1])
colnames(x)[par1]
x[,par1]
if (par2 == 'kmeans') {
cl <- kmeans(x[,par1], par3)
print(cl)
clm <- matrix(cbind(cl$centers,1:par3),ncol=2)
clm <- clm[sort.list(clm[,1]),]
for (i in 1:par3) {
cl$cluster[cl$cluster==clm[i,2]] <- paste('C',i,sep='')
}
cl$cluster <- as.factor(cl$cluster)
print(cl$cluster)
x[,par1] <- cl$cluster
}
if (par2 == 'quantiles') {
x[,par1] <- cut2(x[,par1],g=par3)
}
if (par2 == 'hclust') {
hc <- hclust(dist(x[,par1])^2, 'cen')
print(hc)
memb <- cutree(hc, k = par3)
dum <- c(mean(x[memb==1,par1]))
for (i in 2:par3) {
dum <- c(dum, mean(x[memb==i,par1]))
}
hcm <- matrix(cbind(dum,1:par3),ncol=2)
hcm <- hcm[sort.list(hcm[,1]),]
for (i in 1:par3) {
memb[memb==hcm[i,2]] <- paste('C',i,sep='')
}
memb <- as.factor(memb)
print(memb)
x[,par1] <- memb
}
if (par2=='equal') {
ed <- cut(as.numeric(x[,par1]),par3,labels=paste('C',1:par3,sep=''))
x[,par1] <- as.factor(ed)
}
table(x[,par1])
colnames(x)
colnames(x)[par1]
x[,par1]
if (par2 == 'none') {
m <- ctree(as.formula(paste(colnames(x)[par1],' ~ .',sep='')),data = x)
}
load(file='createtable')
if (par2 != 'none') {
m <- ctree(as.formula(paste('as.factor(',colnames(x)[par1],') ~ .',sep='')),data = x)
if (par4=='yes') {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'10-Fold Cross Validation',3+2*par3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'',1,TRUE)
a<-table.element(a,'Prediction (training)',par3+1,TRUE)
a<-table.element(a,'Prediction (testing)',par3+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Actual',1,TRUE)
for (jjj in 1:par3) a<-table.element(a,paste('C',jjj,sep=''),1,TRUE)
a<-table.element(a,'CV',1,TRUE)
for (jjj in 1:par3) a<-table.element(a,paste('C',jjj,sep=''),1,TRUE)
a<-table.element(a,'CV',1,TRUE)
a<-table.row.end(a)
for (i in 1:10) {
ind <- sample(2, nrow(x), replace=T, prob=c(0.9,0.1))
m.ct <- ctree(as.formula(paste('as.factor(',colnames(x)[par1],') ~ .',sep='')),data =x[ind==1,])
if (i==1) {
m.ct.i.pred <- predict(m.ct, newdata=x[ind==1,])
m.ct.i.actu <- x[ind==1,par1]
m.ct.x.pred <- predict(m.ct, newdata=x[ind==2,])
m.ct.x.actu <- x[ind==2,par1]
} else {
m.ct.i.pred <- c(m.ct.i.pred,predict(m.ct, newdata=x[ind==1,]))
m.ct.i.actu <- c(m.ct.i.actu,x[ind==1,par1])
m.ct.x.pred <- c(m.ct.x.pred,predict(m.ct, newdata=x[ind==2,]))
m.ct.x.actu <- c(m.ct.x.actu,x[ind==2,par1])
}
}
print(m.ct.i.tab <- table(m.ct.i.actu,m.ct.i.pred))
numer <- 0
for (i in 1:par3) {
print(m.ct.i.tab[i,i] / sum(m.ct.i.tab[i,]))
numer <- numer + m.ct.i.tab[i,i]
}
print(m.ct.i.cp <- numer / sum(m.ct.i.tab))
print(m.ct.x.tab <- table(m.ct.x.actu,m.ct.x.pred))
numer <- 0
for (i in 1:par3) {
print(m.ct.x.tab[i,i] / sum(m.ct.x.tab[i,]))
numer <- numer + m.ct.x.tab[i,i]
}
print(m.ct.x.cp <- numer / sum(m.ct.x.tab))
for (i in 1:par3) {
a<-table.row.start(a)
a<-table.element(a,paste('C',i,sep=''),1,TRUE)
for (jjj in 1:par3) a<-table.element(a,m.ct.i.tab[i,jjj])
a<-table.element(a,round(m.ct.i.tab[i,i]/sum(m.ct.i.tab[i,]),4))
for (jjj in 1:par3) a<-table.element(a,m.ct.x.tab[i,jjj])
a<-table.element(a,round(m.ct.x.tab[i,i]/sum(m.ct.x.tab[i,]),4))
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,'Overall',1,TRUE)
for (jjj in 1:par3) a<-table.element(a,'-')
a<-table.element(a,round(m.ct.i.cp,4))
for (jjj in 1:par3) a<-table.element(a,'-')
a<-table.element(a,round(m.ct.x.cp,4))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
}
}
m
bitmap(file='test1.png')
plot(m)
dev.off()
bitmap(file='test1a.png')
plot(x[,par1] ~ as.factor(where(m)),main='Response by Terminal Node',xlab='Terminal Node',ylab='Response')
dev.off()
if (par2 == 'none') {
forec <- predict(m)
result <- as.data.frame(cbind(x[,par1],forec,x[,par1]-forec))
colnames(result) <- c('Actuals','Forecasts','Residuals')
print(result)
}
if (par2 != 'none') {
print(cbind(as.factor(x[,par1]),predict(m)))
myt <- table(as.factor(x[,par1]),predict(m))
print(myt)
}
bitmap(file='test2.png')
if(par2=='none') {
op <- par(mfrow=c(2,2))
plot(density(result$Actuals),main='Kernel Density Plot of Actuals')
plot(density(result$Residuals),main='Kernel Density Plot of Residuals')
plot(result$Forecasts,result$Actuals,main='Actuals versus Predictions',xlab='Predictions',ylab='Actuals')
plot(density(result$Forecasts),main='Kernel Density Plot of Predictions')
par(op)
}
if(par2!='none') {
plot(myt,main='Confusion Matrix',xlab='Actual',ylab='Predicted')
}
dev.off()
if (par2 == 'none') {
detcoef <- cor(result$Forecasts,result$Actuals)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goodness of Fit',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Correlation',1,TRUE)
a<-table.element(a,round(detcoef,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'R-squared',1,TRUE)
a<-table.element(a,round(detcoef*detcoef,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'RMSE',1,TRUE)
a<-table.element(a,round(sqrt(mean((result$Residuals)^2)),4))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Actuals, Predictions, and Residuals',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'#',header=TRUE)
a<-table.element(a,'Actuals',header=TRUE)
a<-table.element(a,'Forecasts',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(result$Actuals)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,result$Actuals[i])
a<-table.element(a,result$Forecasts[i])
a<-table.element(a,result$Residuals[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
}
if (par2 != 'none') {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Confusion Matrix (predicted in columns / actuals in rows)',par3+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'',1,TRUE)
for (i in 1:par3) {
a<-table.element(a,paste('C',i,sep=''),1,TRUE)
}
a<-table.row.end(a)
for (i in 1:par3) {
a<-table.row.start(a)
a<-table.element(a,paste('C',i,sep=''),1,TRUE)
for (j in 1:par3) {
a<-table.element(a,myt[i,j])
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
}