Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_One Factor ANOVA.wasp
Title produced by softwareOne-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)
Date of computationMon, 17 Nov 2014 11:18:15 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Nov/17/t14162231112gt1oj5rzyz5he8.htm/, Retrieved Sun, 10 Nov 2024 19:42:03 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=255405, Retrieved Sun, 10 Nov 2024 19:42:03 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact169
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Chi Square Measure of Association- Free Statistics Software (Calculator)] [One Way ANOVA wit...] [2009-11-29 13:09:19] [98fd0e87c3eb04e0cc2efde01dbafab6]
-   PD  [Chi Square Measure of Association- Free Statistics Software (Calculator)] [One Way ANOVA for...] [2009-12-01 13:05:10] [3fdd735c61ad38cbc9b3393dc997cdb7]
- R P     [Chi Square Measure of Association- Free Statistics Software (Calculator)] [CARE date with Tu...] [2009-12-01 18:33:48] [98fd0e87c3eb04e0cc2efde01dbafab6]
-   P       [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [CARE Data with Tu...] [2010-11-23 12:09:38] [3fdd735c61ad38cbc9b3393dc997cdb7]
- RM          [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [IQ and Mothers Age] [2011-11-21 16:34:08] [98fd0e87c3eb04e0cc2efde01dbafab6]
- RM D          [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [verbal iq] [2014-11-17 11:10:27] [f6caa5588e292a3002dc388fa45db9ab]
-    D              [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [moms iq and child...] [2014-11-17 11:18:15] [256ed235540d507523ee4ee4758ef6fc] [Current]
-    D                [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [moms iq and child...] [2014-11-17 11:23:31] [f6caa5588e292a3002dc388fa45db9ab]
-    D                  [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [mothers warmth 30...] [2014-11-17 11:49:23] [f6caa5588e292a3002dc388fa45db9ab]
-    D                    [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [mothers warmth an...] [2014-11-17 11:54:39] [f6caa5588e292a3002dc388fa45db9ab]
-    D                      [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [moms warmth and c...] [2014-11-17 12:02:50] [f6caa5588e292a3002dc388fa45db9ab]
-    D                      [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [moms warmth and c...] [2014-11-17 12:04:46] [f6caa5588e292a3002dc388fa45db9ab]
Feedback Forum

Post a new message
Dataseries X:
0	1
88	2
94	2
90	3
73	2
68	1
80	2
86	2
86	1
91	3
79	1
96	3
92	2
72	1
96	2
70	2
86	2
87	1
88	3
79	2
90	1
95	1
85	1
0	1
90	2
115	3
84	2
79	2
94	2
97	2
86	2
111	3
87	2
98	2
87	2
68	1
88	2
82	2
111	3
75	1
94	2
95	1
80	2
95	2
68	2
94	2
88	2
84	1
0	1
101	2
98	2
78	1
109	1
102	1
81	1
97	1
75	2
97	2
0	2
101	1
101	1
95	2
95	2
0	2
95	2
90	2
107	3
92	2
86	2
70	1
95	2
96	2
91	2
87	3
92	2
97	2
102	3
91	1
68	2
88	1
97	2
90	2
101	2
94	2
101	3
109	3
100	2
103	2
94	2
97	2
85	2
75	2
77	1
87	1
78	1
108	3
97	2
105	2
106	2
107	2
95	1
107	2
115	2
101	2
85	1
90	2
115	3
95	2
97	1
112	1
97	1
77	1
90	2
94	2
103	3
77	2
98	2
90	2
111	3
77	1
88	3
75	1
92	2
78	2
106	2
80	1
87	2
92	1
0	3
111	3
86	2
85	2
90	1
101	3
94	2
86	1
86	1
90	1
75	1
86	2
91	3
97	2
91	2
70	1
98	2
96	1
95	1
100	2
95	1
97	2
97	1
92	3
115	3
88	3
87	2
100	2
98	2
102	1
0	2
96	1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ fisher.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=255405&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ fisher.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=255405&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=255405&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net







ANOVA Model
WISCRY7V ~ MVRBIQO
means82.186.05314.945

\begin{tabular}{lllllllll}
\hline
ANOVA Model \tabularnewline
WISCRY7V  ~  MVRBIQO \tabularnewline
means & 82.18 & 6.053 & 14.945 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=255405&T=1

[TABLE]
[ROW][C]ANOVA Model[/C][/ROW]
[ROW][C]WISCRY7V  ~  MVRBIQO[/C][/ROW]
[ROW][C]means[/C][C]82.18[/C][C]6.053[/C][C]14.945[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=255405&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=255405&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Model
WISCRY7V ~ MVRBIQO
means82.186.05314.945







ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
MVRBIQO23679.7461839.8734.1160.018
Residuals15770187.354447.053

\begin{tabular}{lllllllll}
\hline
ANOVA Statistics \tabularnewline
  & Df & Sum Sq & Mean Sq & F value & Pr(>F) \tabularnewline
MVRBIQO & 2 & 3679.746 & 1839.873 & 4.116 & 0.018 \tabularnewline
Residuals & 157 & 70187.354 & 447.053 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=255405&T=2

[TABLE]
[ROW][C]ANOVA Statistics[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]Sum Sq[/C][C]Mean Sq[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]MVRBIQO[/C][C]2[/C][C]3679.746[/C][C]1839.873[/C][C]4.116[/C][C]0.018[/C][/ROW]
[ROW][C]Residuals[/C][C]157[/C][C]70187.354[/C][C]447.053[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=255405&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=255405&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
MVRBIQO23679.7461839.8734.1160.018
Residuals15770187.354447.053







Tukey Honest Significant Difference Comparisons
difflwruprp adj
2-16.053-2.84514.950.245
3-114.9452.52127.3690.014
3-28.892-2.65720.4420.166

\begin{tabular}{lllllllll}
\hline
Tukey Honest Significant Difference Comparisons \tabularnewline
  & diff & lwr & upr & p adj \tabularnewline
2-1 & 6.053 & -2.845 & 14.95 & 0.245 \tabularnewline
3-1 & 14.945 & 2.521 & 27.369 & 0.014 \tabularnewline
3-2 & 8.892 & -2.657 & 20.442 & 0.166 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=255405&T=3

[TABLE]
[ROW][C]Tukey Honest Significant Difference Comparisons[/C][/ROW]
[ROW][C] [/C][C]diff[/C][C]lwr[/C][C]upr[/C][C]p adj[/C][/ROW]
[ROW][C]2-1[/C][C]6.053[/C][C]-2.845[/C][C]14.95[/C][C]0.245[/C][/ROW]
[ROW][C]3-1[/C][C]14.945[/C][C]2.521[/C][C]27.369[/C][C]0.014[/C][/ROW]
[ROW][C]3-2[/C][C]8.892[/C][C]-2.657[/C][C]20.442[/C][C]0.166[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=255405&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=255405&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Tukey Honest Significant Difference Comparisons
difflwruprp adj
2-16.053-2.84514.950.245
3-114.9452.52127.3690.014
3-28.892-2.65720.4420.166







Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group20.7240.486
157

\begin{tabular}{lllllllll}
\hline
Levenes Test for Homogeneity of Variance \tabularnewline
  & Df & F value & Pr(>F) \tabularnewline
Group & 2 & 0.724 & 0.486 \tabularnewline
  & 157 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=255405&T=4

[TABLE]
[ROW][C]Levenes Test for Homogeneity of Variance[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]Group[/C][C]2[/C][C]0.724[/C][C]0.486[/C][/ROW]
[ROW][C] [/C][C]157[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=255405&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=255405&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group20.7240.486
157



Parameters (Session):
par1 = 1 ; par2 = 2 ; par3 = TRUE ;
Parameters (R input):
par1 = 1 ; par2 = 2 ; par3 = TRUE ;
R code (references can be found in the software module):
cat1 <- as.numeric(par1) #
cat2<- as.numeric(par2) #
intercept<-as.logical(par3)
x <- t(x)
x1<-as.numeric(x[,cat1])
f1<-as.character(x[,cat2])
xdf<-data.frame(x1,f1)
(V1<-dimnames(y)[[1]][cat1])
(V2<-dimnames(y)[[1]][cat2])
names(xdf)<-c('Response', 'Treatment')
if(intercept == FALSE) (lmxdf<-lm(Response ~ Treatment - 1, data = xdf) ) else (lmxdf<-lm(Response ~ Treatment, data = xdf) )
(aov.xdf<-aov(lmxdf) )
(anova.xdf<-anova(lmxdf) )
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Model', length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, paste(V1, ' ~ ', V2), length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'means',,TRUE)
for(i in 1:length(lmxdf$coefficients)){
a<-table.element(a, round(lmxdf$coefficients[i], digits=3),,FALSE)
}
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Statistics', 5+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ',,TRUE)
a<-table.element(a, 'Df',,FALSE)
a<-table.element(a, 'Sum Sq',,FALSE)
a<-table.element(a, 'Mean Sq',,FALSE)
a<-table.element(a, 'F value',,FALSE)
a<-table.element(a, 'Pr(>F)',,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, V2,,TRUE)
a<-table.element(a, anova.xdf$Df[1],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'F value'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3),,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residuals',,TRUE)
a<-table.element(a, anova.xdf$Df[2],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3),,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
bitmap(file='anovaplot.png')
boxplot(Response ~ Treatment, data=xdf, xlab=V2, ylab=V1)
dev.off()
if(intercept==TRUE){
thsd<-TukeyHSD(aov.xdf)
bitmap(file='TukeyHSDPlot.png')
plot(thsd)
dev.off()
}
if(intercept==TRUE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Tukey Honest Significant Difference Comparisons', 5,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ', 1, TRUE)
for(i in 1:4){
a<-table.element(a,colnames(thsd[[1]])[i], 1, TRUE)
}
a<-table.row.end(a)
for(i in 1:length(rownames(thsd[[1]]))){
a<-table.row.start(a)
a<-table.element(a,rownames(thsd[[1]])[i], 1, TRUE)
for(j in 1:4){
a<-table.element(a,round(thsd[[1]][i,j], digits=3), 1, FALSE)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
if(intercept==FALSE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'TukeyHSD Message', 1,TRUE)
a<-table.row.end(a)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Must Include Intercept to use Tukey Test ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
library(car)
lt.lmxdf<-levene.test(lmxdf)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Levenes Test for Homogeneity of Variance', 4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
for (i in 1:3){
a<-table.element(a,names(lt.lmxdf)[i], 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Group', 1, TRUE)
for (i in 1:3){
a<-table.element(a,round(lt.lmxdf[[i]][1], digits=3), 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
a<-table.element(a,lt.lmxdf[[1]][2], 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')