Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 24 Nov 2009 13:46:35 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/24/t12590956687zhngm0la306rxq.htm/, Retrieved Wed, 15 Jan 2025 08:37:14 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=59276, Retrieved Wed, 15 Jan 2025 08:37:14 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact208
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
- RMPD  [Multiple Regression] [Seatbelt] [2009-11-12 13:54:52] [b98453cac15ba1066b407e146608df68]
-    D    [Multiple Regression] [workshop 7 bereke...] [2009-11-19 15:24:52] [eaf42bcf5162b5692bb3c7f9d4636222]
-   PD      [Multiple Regression] [DSHW-WS7-Multiple...] [2009-11-20 13:19:23] [f15cfb7053d35072d573abca87df96a0]
-   P         [Multiple Regression] [DSHW-WS7-Multiple...] [2009-11-20 13:53:17] [f15cfb7053d35072d573abca87df96a0]
-    D          [Multiple Regression] [DSHW-WS7-MultRegr1] [2009-11-20 14:59:26] [f15cfb7053d35072d573abca87df96a0]
-    D            [Multiple Regression] [DSHW-WS7-MultRegr...] [2009-11-20 15:10:50] [f15cfb7053d35072d573abca87df96a0]
-   P               [Multiple Regression] [DSHW-WS7-MiltRegr.2] [2009-11-20 15:42:03] [f15cfb7053d35072d573abca87df96a0]
-    D                  [Multiple Regression] [review 7] [2009-11-24 20:46:35] [6198946fb53eb5eb18db46bb758f7fde] [Current]
Feedback Forum

Post a new message
Dataseries X:
1,6	0	1,4
1,7	0	1,6
2	0	1,7
2	0	2
2,1	0	2
2,5	0	2,1
2,5	0	2,5
2,6	0	2,5
2,7	0	2,6
3,7	0	2,7
4	0	3,7
5	0	4
5,1	0	5
5,1	0	5,1
5	0	5,1
5,1	0	5
4,7	0	5,1
4,5	0	4,7
4,5	0	4,5
4,6	0	4,5
4,6	0	4,6
4,6	0	4,6
4,6	0	4,6
5,3	0	4,6
5,4	0	5,3
5,3	0	5,4
5,2	0	5,3
5	0	5,2
4,2	0	5
4,3	0	4,2
4,3	0	4,3
4,3	0	4,3
4	0	4,3
4	0	4
4,1	0	4
4,4	0	4,1
3,6	0	4,4
3,7	0	3,6
3,8	0	3,7
3,3	0	3,8
3,3	0	3,3
3,3	0	3,3
3,5	0	3,3
3,3	0	3,5
3,3	0	3,3
3,4	0	3,3
3,4	0	3,4
5,2	0	3,4
5,3	0	5,2
4,8	1	5,3
5	1	4,8
4,6	1	5
4,6	1	4,6
3,5	1	4,6
3,5	1	3,5




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59276&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59276&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59276&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
IndGez[t] = + 1.42438152443353 -0.167230832567180InvlMex[t] + 0.882141236165582`IndGez-1`[t] -0.982303190498912M1[t] -0.97592854981554M2[t] -0.825357250922293M3[t] -1.09592854981554M4[t] -1.13950030258242M5[t] -1.10542923062600M6[t] -0.924286632839504M7[t] -0.988304098246186M8[t] -1.03830409824619M9[t] -0.719197036437907M10[t] -0.861785876383442M11[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
IndGez[t] =  +  1.42438152443353 -0.167230832567180InvlMex[t] +  0.882141236165582`IndGez-1`[t] -0.982303190498912M1[t] -0.97592854981554M2[t] -0.825357250922293M3[t] -1.09592854981554M4[t] -1.13950030258242M5[t] -1.10542923062600M6[t] -0.924286632839504M7[t] -0.988304098246186M8[t] -1.03830409824619M9[t] -0.719197036437907M10[t] -0.861785876383442M11[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59276&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]IndGez[t] =  +  1.42438152443353 -0.167230832567180InvlMex[t] +  0.882141236165582`IndGez-1`[t] -0.982303190498912M1[t] -0.97592854981554M2[t] -0.825357250922293M3[t] -1.09592854981554M4[t] -1.13950030258242M5[t] -1.10542923062600M6[t] -0.924286632839504M7[t] -0.988304098246186M8[t] -1.03830409824619M9[t] -0.719197036437907M10[t] -0.861785876383442M11[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59276&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59276&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
IndGez[t] = + 1.42438152443353 -0.167230832567180InvlMex[t] + 0.882141236165582`IndGez-1`[t] -0.982303190498912M1[t] -0.97592854981554M2[t] -0.825357250922293M3[t] -1.09592854981554M4[t] -1.13950030258242M5[t] -1.10542923062600M6[t] -0.924286632839504M7[t] -0.988304098246186M8[t] -1.03830409824619M9[t] -0.719197036437907M10[t] -0.861785876383442M11[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)1.424381524433530.2342096.081700
InvlMex-0.1672308325671800.150408-1.11180.2726810.136341
`IndGez-1`0.8821412361655820.04239320.808500
M1-0.9823031904989120.215471-4.55894.6e-052.3e-05
M2-0.975928549815540.217225-4.49275.6e-052.8e-05
M3-0.8253572509222930.217242-3.79920.0004730.000236
M4-1.095928549815540.217225-5.04511e-055e-06
M5-1.139500302582420.217368-5.24235e-063e-06
M6-1.105429230626000.217907-5.07299e-064e-06
M7-0.9242866328395040.218548-4.22920.0001286.4e-05
M8-0.9883040982461860.227301-4.3488.9e-054.4e-05
M9-1.038304098246190.227301-4.5684.4e-052.2e-05
M10-0.7191970364379070.227439-3.16210.0029450.001472
M11-0.8617858763834420.226923-3.79770.0004750.000237

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 1.42438152443353 & 0.234209 & 6.0817 & 0 & 0 \tabularnewline
InvlMex & -0.167230832567180 & 0.150408 & -1.1118 & 0.272681 & 0.136341 \tabularnewline
`IndGez-1` & 0.882141236165582 & 0.042393 & 20.8085 & 0 & 0 \tabularnewline
M1 & -0.982303190498912 & 0.215471 & -4.5589 & 4.6e-05 & 2.3e-05 \tabularnewline
M2 & -0.97592854981554 & 0.217225 & -4.4927 & 5.6e-05 & 2.8e-05 \tabularnewline
M3 & -0.825357250922293 & 0.217242 & -3.7992 & 0.000473 & 0.000236 \tabularnewline
M4 & -1.09592854981554 & 0.217225 & -5.0451 & 1e-05 & 5e-06 \tabularnewline
M5 & -1.13950030258242 & 0.217368 & -5.2423 & 5e-06 & 3e-06 \tabularnewline
M6 & -1.10542923062600 & 0.217907 & -5.0729 & 9e-06 & 4e-06 \tabularnewline
M7 & -0.924286632839504 & 0.218548 & -4.2292 & 0.000128 & 6.4e-05 \tabularnewline
M8 & -0.988304098246186 & 0.227301 & -4.348 & 8.9e-05 & 4.4e-05 \tabularnewline
M9 & -1.03830409824619 & 0.227301 & -4.568 & 4.4e-05 & 2.2e-05 \tabularnewline
M10 & -0.719197036437907 & 0.227439 & -3.1621 & 0.002945 & 0.001472 \tabularnewline
M11 & -0.861785876383442 & 0.226923 & -3.7977 & 0.000475 & 0.000237 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59276&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]1.42438152443353[/C][C]0.234209[/C][C]6.0817[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]InvlMex[/C][C]-0.167230832567180[/C][C]0.150408[/C][C]-1.1118[/C][C]0.272681[/C][C]0.136341[/C][/ROW]
[ROW][C]`IndGez-1`[/C][C]0.882141236165582[/C][C]0.042393[/C][C]20.8085[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M1[/C][C]-0.982303190498912[/C][C]0.215471[/C][C]-4.5589[/C][C]4.6e-05[/C][C]2.3e-05[/C][/ROW]
[ROW][C]M2[/C][C]-0.97592854981554[/C][C]0.217225[/C][C]-4.4927[/C][C]5.6e-05[/C][C]2.8e-05[/C][/ROW]
[ROW][C]M3[/C][C]-0.825357250922293[/C][C]0.217242[/C][C]-3.7992[/C][C]0.000473[/C][C]0.000236[/C][/ROW]
[ROW][C]M4[/C][C]-1.09592854981554[/C][C]0.217225[/C][C]-5.0451[/C][C]1e-05[/C][C]5e-06[/C][/ROW]
[ROW][C]M5[/C][C]-1.13950030258242[/C][C]0.217368[/C][C]-5.2423[/C][C]5e-06[/C][C]3e-06[/C][/ROW]
[ROW][C]M6[/C][C]-1.10542923062600[/C][C]0.217907[/C][C]-5.0729[/C][C]9e-06[/C][C]4e-06[/C][/ROW]
[ROW][C]M7[/C][C]-0.924286632839504[/C][C]0.218548[/C][C]-4.2292[/C][C]0.000128[/C][C]6.4e-05[/C][/ROW]
[ROW][C]M8[/C][C]-0.988304098246186[/C][C]0.227301[/C][C]-4.348[/C][C]8.9e-05[/C][C]4.4e-05[/C][/ROW]
[ROW][C]M9[/C][C]-1.03830409824619[/C][C]0.227301[/C][C]-4.568[/C][C]4.4e-05[/C][C]2.2e-05[/C][/ROW]
[ROW][C]M10[/C][C]-0.719197036437907[/C][C]0.227439[/C][C]-3.1621[/C][C]0.002945[/C][C]0.001472[/C][/ROW]
[ROW][C]M11[/C][C]-0.861785876383442[/C][C]0.226923[/C][C]-3.7977[/C][C]0.000475[/C][C]0.000237[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59276&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59276&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)1.424381524433530.2342096.081700
InvlMex-0.1672308325671800.150408-1.11180.2726810.136341
`IndGez-1`0.8821412361655820.04239320.808500
M1-0.9823031904989120.215471-4.55894.6e-052.3e-05
M2-0.975928549815540.217225-4.49275.6e-052.8e-05
M3-0.8253572509222930.217242-3.79920.0004730.000236
M4-1.095928549815540.217225-5.04511e-055e-06
M5-1.139500302582420.217368-5.24235e-063e-06
M6-1.105429230626000.217907-5.07299e-064e-06
M7-0.9242866328395040.218548-4.22920.0001286.4e-05
M8-0.9883040982461860.227301-4.3488.9e-054.4e-05
M9-1.038304098246190.227301-4.5684.4e-052.2e-05
M10-0.7191970364379070.227439-3.16210.0029450.001472
M11-0.8617858763834420.226923-3.79770.0004750.000237







Multiple Linear Regression - Regression Statistics
Multiple R0.962194952626626
R-squared0.925819126860156
Adjusted R-squared0.902298362206059
F-TEST (value)39.3617784317609
F-TEST (DF numerator)13
F-TEST (DF denominator)41
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.320861133855173
Sum Squared Residuals4.22102655597193

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.962194952626626 \tabularnewline
R-squared & 0.925819126860156 \tabularnewline
Adjusted R-squared & 0.902298362206059 \tabularnewline
F-TEST (value) & 39.3617784317609 \tabularnewline
F-TEST (DF numerator) & 13 \tabularnewline
F-TEST (DF denominator) & 41 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 0.320861133855173 \tabularnewline
Sum Squared Residuals & 4.22102655597193 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59276&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.962194952626626[/C][/ROW]
[ROW][C]R-squared[/C][C]0.925819126860156[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.902298362206059[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]39.3617784317609[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]13[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]41[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]0.320861133855173[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]4.22102655597193[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59276&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59276&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.962194952626626
R-squared0.925819126860156
Adjusted R-squared0.902298362206059
F-TEST (value)39.3617784317609
F-TEST (DF numerator)13
F-TEST (DF denominator)41
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.320861133855173
Sum Squared Residuals4.22102655597193







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
11.61.67707606456644-0.0770760645664356
21.71.85987895248292-0.15987895248292
322.09866437499272-0.0986643749927234
422.09273544694915-0.0927354469491545
52.12.049163694182270.0508363058177288
62.52.171448889755260.328551110244742
72.52.70544798200798-0.205447982007984
82.62.64143051660130-0.0414305166013019
92.72.679644640217860.0203553597821408
103.73.08696582564270.613034174357303
1143.826518221862740.173481778137255
1254.952946469095860.0470535309041391
135.14.852784514762530.247215485237469
145.14.947373279062460.15262672093754
1555.09794457795571-0.0979445779557072
165.14.73915915544590.360840844554098
174.74.78380152629558-0.0838015262955758
184.54.465016103785770.0349838962142288
194.54.469730454339150.0302695456608515
204.64.405712988932470.194287011067534
214.64.443927112549020.156072887450976
224.64.7630341743573-0.163034174357303
234.64.62044533441177-0.0204453344117677
245.35.48223121079521-0.18223121079521
255.45.11742688561220.282573114387795
265.35.212015649912130.0879843500878647
275.25.27437282518882-0.0743728251888235
2854.915587402679020.084412597320982
294.24.69558740267902-0.495587402679018
304.34.023945485702980.276054514297019
314.34.293302207106030.00669779289396837
324.34.229284741699350.070715258300651
3344.17928474169935-0.179284741699349
3444.23374943265795-0.233749432657954
354.14.091160592712420.0088394072875814
364.45.04116059271242-0.641160592712419
373.64.32349977306318-0.723499773063182
383.73.624161424814090.0758385751859131
393.83.86294684732389-0.0629468473238928
403.33.68058967204720-0.380589672047203
413.33.195947301197530.104052698802471
423.33.230018373153960.0699816268460437
433.53.411160970940450.0888390290595506
443.33.52357175276688-0.223571752766883
453.33.297143505533770.00285649446623263
463.43.61625056734205-0.216250567342046
473.43.56187585101307-0.161875851013069
485.24.423661727396510.77633827260349
495.35.029212761995650.270787238004353
504.84.9565706937284-0.156570693728398
5154.666071374538850.333928625461147
524.64.571928322878720.0280716771212774
534.64.175500075645610.424499924354394
543.54.20957114760203-0.709571147602033
553.53.420358385606390.0796416143936131

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 1.6 & 1.67707606456644 & -0.0770760645664356 \tabularnewline
2 & 1.7 & 1.85987895248292 & -0.15987895248292 \tabularnewline
3 & 2 & 2.09866437499272 & -0.0986643749927234 \tabularnewline
4 & 2 & 2.09273544694915 & -0.0927354469491545 \tabularnewline
5 & 2.1 & 2.04916369418227 & 0.0508363058177288 \tabularnewline
6 & 2.5 & 2.17144888975526 & 0.328551110244742 \tabularnewline
7 & 2.5 & 2.70544798200798 & -0.205447982007984 \tabularnewline
8 & 2.6 & 2.64143051660130 & -0.0414305166013019 \tabularnewline
9 & 2.7 & 2.67964464021786 & 0.0203553597821408 \tabularnewline
10 & 3.7 & 3.0869658256427 & 0.613034174357303 \tabularnewline
11 & 4 & 3.82651822186274 & 0.173481778137255 \tabularnewline
12 & 5 & 4.95294646909586 & 0.0470535309041391 \tabularnewline
13 & 5.1 & 4.85278451476253 & 0.247215485237469 \tabularnewline
14 & 5.1 & 4.94737327906246 & 0.15262672093754 \tabularnewline
15 & 5 & 5.09794457795571 & -0.0979445779557072 \tabularnewline
16 & 5.1 & 4.7391591554459 & 0.360840844554098 \tabularnewline
17 & 4.7 & 4.78380152629558 & -0.0838015262955758 \tabularnewline
18 & 4.5 & 4.46501610378577 & 0.0349838962142288 \tabularnewline
19 & 4.5 & 4.46973045433915 & 0.0302695456608515 \tabularnewline
20 & 4.6 & 4.40571298893247 & 0.194287011067534 \tabularnewline
21 & 4.6 & 4.44392711254902 & 0.156072887450976 \tabularnewline
22 & 4.6 & 4.7630341743573 & -0.163034174357303 \tabularnewline
23 & 4.6 & 4.62044533441177 & -0.0204453344117677 \tabularnewline
24 & 5.3 & 5.48223121079521 & -0.18223121079521 \tabularnewline
25 & 5.4 & 5.1174268856122 & 0.282573114387795 \tabularnewline
26 & 5.3 & 5.21201564991213 & 0.0879843500878647 \tabularnewline
27 & 5.2 & 5.27437282518882 & -0.0743728251888235 \tabularnewline
28 & 5 & 4.91558740267902 & 0.084412597320982 \tabularnewline
29 & 4.2 & 4.69558740267902 & -0.495587402679018 \tabularnewline
30 & 4.3 & 4.02394548570298 & 0.276054514297019 \tabularnewline
31 & 4.3 & 4.29330220710603 & 0.00669779289396837 \tabularnewline
32 & 4.3 & 4.22928474169935 & 0.070715258300651 \tabularnewline
33 & 4 & 4.17928474169935 & -0.179284741699349 \tabularnewline
34 & 4 & 4.23374943265795 & -0.233749432657954 \tabularnewline
35 & 4.1 & 4.09116059271242 & 0.0088394072875814 \tabularnewline
36 & 4.4 & 5.04116059271242 & -0.641160592712419 \tabularnewline
37 & 3.6 & 4.32349977306318 & -0.723499773063182 \tabularnewline
38 & 3.7 & 3.62416142481409 & 0.0758385751859131 \tabularnewline
39 & 3.8 & 3.86294684732389 & -0.0629468473238928 \tabularnewline
40 & 3.3 & 3.68058967204720 & -0.380589672047203 \tabularnewline
41 & 3.3 & 3.19594730119753 & 0.104052698802471 \tabularnewline
42 & 3.3 & 3.23001837315396 & 0.0699816268460437 \tabularnewline
43 & 3.5 & 3.41116097094045 & 0.0888390290595506 \tabularnewline
44 & 3.3 & 3.52357175276688 & -0.223571752766883 \tabularnewline
45 & 3.3 & 3.29714350553377 & 0.00285649446623263 \tabularnewline
46 & 3.4 & 3.61625056734205 & -0.216250567342046 \tabularnewline
47 & 3.4 & 3.56187585101307 & -0.161875851013069 \tabularnewline
48 & 5.2 & 4.42366172739651 & 0.77633827260349 \tabularnewline
49 & 5.3 & 5.02921276199565 & 0.270787238004353 \tabularnewline
50 & 4.8 & 4.9565706937284 & -0.156570693728398 \tabularnewline
51 & 5 & 4.66607137453885 & 0.333928625461147 \tabularnewline
52 & 4.6 & 4.57192832287872 & 0.0280716771212774 \tabularnewline
53 & 4.6 & 4.17550007564561 & 0.424499924354394 \tabularnewline
54 & 3.5 & 4.20957114760203 & -0.709571147602033 \tabularnewline
55 & 3.5 & 3.42035838560639 & 0.0796416143936131 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59276&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]1.6[/C][C]1.67707606456644[/C][C]-0.0770760645664356[/C][/ROW]
[ROW][C]2[/C][C]1.7[/C][C]1.85987895248292[/C][C]-0.15987895248292[/C][/ROW]
[ROW][C]3[/C][C]2[/C][C]2.09866437499272[/C][C]-0.0986643749927234[/C][/ROW]
[ROW][C]4[/C][C]2[/C][C]2.09273544694915[/C][C]-0.0927354469491545[/C][/ROW]
[ROW][C]5[/C][C]2.1[/C][C]2.04916369418227[/C][C]0.0508363058177288[/C][/ROW]
[ROW][C]6[/C][C]2.5[/C][C]2.17144888975526[/C][C]0.328551110244742[/C][/ROW]
[ROW][C]7[/C][C]2.5[/C][C]2.70544798200798[/C][C]-0.205447982007984[/C][/ROW]
[ROW][C]8[/C][C]2.6[/C][C]2.64143051660130[/C][C]-0.0414305166013019[/C][/ROW]
[ROW][C]9[/C][C]2.7[/C][C]2.67964464021786[/C][C]0.0203553597821408[/C][/ROW]
[ROW][C]10[/C][C]3.7[/C][C]3.0869658256427[/C][C]0.613034174357303[/C][/ROW]
[ROW][C]11[/C][C]4[/C][C]3.82651822186274[/C][C]0.173481778137255[/C][/ROW]
[ROW][C]12[/C][C]5[/C][C]4.95294646909586[/C][C]0.0470535309041391[/C][/ROW]
[ROW][C]13[/C][C]5.1[/C][C]4.85278451476253[/C][C]0.247215485237469[/C][/ROW]
[ROW][C]14[/C][C]5.1[/C][C]4.94737327906246[/C][C]0.15262672093754[/C][/ROW]
[ROW][C]15[/C][C]5[/C][C]5.09794457795571[/C][C]-0.0979445779557072[/C][/ROW]
[ROW][C]16[/C][C]5.1[/C][C]4.7391591554459[/C][C]0.360840844554098[/C][/ROW]
[ROW][C]17[/C][C]4.7[/C][C]4.78380152629558[/C][C]-0.0838015262955758[/C][/ROW]
[ROW][C]18[/C][C]4.5[/C][C]4.46501610378577[/C][C]0.0349838962142288[/C][/ROW]
[ROW][C]19[/C][C]4.5[/C][C]4.46973045433915[/C][C]0.0302695456608515[/C][/ROW]
[ROW][C]20[/C][C]4.6[/C][C]4.40571298893247[/C][C]0.194287011067534[/C][/ROW]
[ROW][C]21[/C][C]4.6[/C][C]4.44392711254902[/C][C]0.156072887450976[/C][/ROW]
[ROW][C]22[/C][C]4.6[/C][C]4.7630341743573[/C][C]-0.163034174357303[/C][/ROW]
[ROW][C]23[/C][C]4.6[/C][C]4.62044533441177[/C][C]-0.0204453344117677[/C][/ROW]
[ROW][C]24[/C][C]5.3[/C][C]5.48223121079521[/C][C]-0.18223121079521[/C][/ROW]
[ROW][C]25[/C][C]5.4[/C][C]5.1174268856122[/C][C]0.282573114387795[/C][/ROW]
[ROW][C]26[/C][C]5.3[/C][C]5.21201564991213[/C][C]0.0879843500878647[/C][/ROW]
[ROW][C]27[/C][C]5.2[/C][C]5.27437282518882[/C][C]-0.0743728251888235[/C][/ROW]
[ROW][C]28[/C][C]5[/C][C]4.91558740267902[/C][C]0.084412597320982[/C][/ROW]
[ROW][C]29[/C][C]4.2[/C][C]4.69558740267902[/C][C]-0.495587402679018[/C][/ROW]
[ROW][C]30[/C][C]4.3[/C][C]4.02394548570298[/C][C]0.276054514297019[/C][/ROW]
[ROW][C]31[/C][C]4.3[/C][C]4.29330220710603[/C][C]0.00669779289396837[/C][/ROW]
[ROW][C]32[/C][C]4.3[/C][C]4.22928474169935[/C][C]0.070715258300651[/C][/ROW]
[ROW][C]33[/C][C]4[/C][C]4.17928474169935[/C][C]-0.179284741699349[/C][/ROW]
[ROW][C]34[/C][C]4[/C][C]4.23374943265795[/C][C]-0.233749432657954[/C][/ROW]
[ROW][C]35[/C][C]4.1[/C][C]4.09116059271242[/C][C]0.0088394072875814[/C][/ROW]
[ROW][C]36[/C][C]4.4[/C][C]5.04116059271242[/C][C]-0.641160592712419[/C][/ROW]
[ROW][C]37[/C][C]3.6[/C][C]4.32349977306318[/C][C]-0.723499773063182[/C][/ROW]
[ROW][C]38[/C][C]3.7[/C][C]3.62416142481409[/C][C]0.0758385751859131[/C][/ROW]
[ROW][C]39[/C][C]3.8[/C][C]3.86294684732389[/C][C]-0.0629468473238928[/C][/ROW]
[ROW][C]40[/C][C]3.3[/C][C]3.68058967204720[/C][C]-0.380589672047203[/C][/ROW]
[ROW][C]41[/C][C]3.3[/C][C]3.19594730119753[/C][C]0.104052698802471[/C][/ROW]
[ROW][C]42[/C][C]3.3[/C][C]3.23001837315396[/C][C]0.0699816268460437[/C][/ROW]
[ROW][C]43[/C][C]3.5[/C][C]3.41116097094045[/C][C]0.0888390290595506[/C][/ROW]
[ROW][C]44[/C][C]3.3[/C][C]3.52357175276688[/C][C]-0.223571752766883[/C][/ROW]
[ROW][C]45[/C][C]3.3[/C][C]3.29714350553377[/C][C]0.00285649446623263[/C][/ROW]
[ROW][C]46[/C][C]3.4[/C][C]3.61625056734205[/C][C]-0.216250567342046[/C][/ROW]
[ROW][C]47[/C][C]3.4[/C][C]3.56187585101307[/C][C]-0.161875851013069[/C][/ROW]
[ROW][C]48[/C][C]5.2[/C][C]4.42366172739651[/C][C]0.77633827260349[/C][/ROW]
[ROW][C]49[/C][C]5.3[/C][C]5.02921276199565[/C][C]0.270787238004353[/C][/ROW]
[ROW][C]50[/C][C]4.8[/C][C]4.9565706937284[/C][C]-0.156570693728398[/C][/ROW]
[ROW][C]51[/C][C]5[/C][C]4.66607137453885[/C][C]0.333928625461147[/C][/ROW]
[ROW][C]52[/C][C]4.6[/C][C]4.57192832287872[/C][C]0.0280716771212774[/C][/ROW]
[ROW][C]53[/C][C]4.6[/C][C]4.17550007564561[/C][C]0.424499924354394[/C][/ROW]
[ROW][C]54[/C][C]3.5[/C][C]4.20957114760203[/C][C]-0.709571147602033[/C][/ROW]
[ROW][C]55[/C][C]3.5[/C][C]3.42035838560639[/C][C]0.0796416143936131[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59276&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59276&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
11.61.67707606456644-0.0770760645664356
21.71.85987895248292-0.15987895248292
322.09866437499272-0.0986643749927234
422.09273544694915-0.0927354469491545
52.12.049163694182270.0508363058177288
62.52.171448889755260.328551110244742
72.52.70544798200798-0.205447982007984
82.62.64143051660130-0.0414305166013019
92.72.679644640217860.0203553597821408
103.73.08696582564270.613034174357303
1143.826518221862740.173481778137255
1254.952946469095860.0470535309041391
135.14.852784514762530.247215485237469
145.14.947373279062460.15262672093754
1555.09794457795571-0.0979445779557072
165.14.73915915544590.360840844554098
174.74.78380152629558-0.0838015262955758
184.54.465016103785770.0349838962142288
194.54.469730454339150.0302695456608515
204.64.405712988932470.194287011067534
214.64.443927112549020.156072887450976
224.64.7630341743573-0.163034174357303
234.64.62044533441177-0.0204453344117677
245.35.48223121079521-0.18223121079521
255.45.11742688561220.282573114387795
265.35.212015649912130.0879843500878647
275.25.27437282518882-0.0743728251888235
2854.915587402679020.084412597320982
294.24.69558740267902-0.495587402679018
304.34.023945485702980.276054514297019
314.34.293302207106030.00669779289396837
324.34.229284741699350.070715258300651
3344.17928474169935-0.179284741699349
3444.23374943265795-0.233749432657954
354.14.091160592712420.0088394072875814
364.45.04116059271242-0.641160592712419
373.64.32349977306318-0.723499773063182
383.73.624161424814090.0758385751859131
393.83.86294684732389-0.0629468473238928
403.33.68058967204720-0.380589672047203
413.33.195947301197530.104052698802471
423.33.230018373153960.0699816268460437
433.53.411160970940450.0888390290595506
443.33.52357175276688-0.223571752766883
453.33.297143505533770.00285649446623263
463.43.61625056734205-0.216250567342046
473.43.56187585101307-0.161875851013069
485.24.423661727396510.77633827260349
495.35.029212761995650.270787238004353
504.84.9565706937284-0.156570693728398
5154.666071374538850.333928625461147
524.64.571928322878720.0280716771212774
534.64.175500075645610.424499924354394
543.54.20957114760203-0.709571147602033
553.53.420358385606390.0796416143936131







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.1788803411660810.3577606823321620.821119658833919
180.1811033077376410.3622066154752830.818896692262359
190.09770504540923380.1954100908184680.902294954590766
200.05130253292715250.1026050658543050.948697467072848
210.02312295804464580.04624591608929160.976877041955354
220.134128888358650.26825777671730.86587111164135
230.08543443861009020.1708688772201800.91456556138991
240.05516981358682720.1103396271736540.944830186413173
250.0384806593616740.0769613187233480.961519340638326
260.02031235299826870.04062470599653750.979687647001731
270.009729703593303640.01945940718660730.990270296406696
280.005289367083390180.01057873416678040.99471063291661
290.01231468042525460.02462936085050920.987685319574745
300.009732793333502350.01946558666700470.990267206666498
310.004497624489575470.008995248979150930.995502375510425
320.002227556361495200.004455112722990390.997772443638505
330.001239480151007820.002478960302015630.998760519848992
340.001113843651772680.002227687303545360.998886156348227
350.0004397941175584880.0008795882351169760.999560205882442
360.02336829835879770.04673659671759550.976631701641202
370.1957035673488310.3914071346976620.804296432651169
380.1152942105923240.2305884211846490.884705789407676

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
17 & 0.178880341166081 & 0.357760682332162 & 0.821119658833919 \tabularnewline
18 & 0.181103307737641 & 0.362206615475283 & 0.818896692262359 \tabularnewline
19 & 0.0977050454092338 & 0.195410090818468 & 0.902294954590766 \tabularnewline
20 & 0.0513025329271525 & 0.102605065854305 & 0.948697467072848 \tabularnewline
21 & 0.0231229580446458 & 0.0462459160892916 & 0.976877041955354 \tabularnewline
22 & 0.13412888835865 & 0.2682577767173 & 0.86587111164135 \tabularnewline
23 & 0.0854344386100902 & 0.170868877220180 & 0.91456556138991 \tabularnewline
24 & 0.0551698135868272 & 0.110339627173654 & 0.944830186413173 \tabularnewline
25 & 0.038480659361674 & 0.076961318723348 & 0.961519340638326 \tabularnewline
26 & 0.0203123529982687 & 0.0406247059965375 & 0.979687647001731 \tabularnewline
27 & 0.00972970359330364 & 0.0194594071866073 & 0.990270296406696 \tabularnewline
28 & 0.00528936708339018 & 0.0105787341667804 & 0.99471063291661 \tabularnewline
29 & 0.0123146804252546 & 0.0246293608505092 & 0.987685319574745 \tabularnewline
30 & 0.00973279333350235 & 0.0194655866670047 & 0.990267206666498 \tabularnewline
31 & 0.00449762448957547 & 0.00899524897915093 & 0.995502375510425 \tabularnewline
32 & 0.00222755636149520 & 0.00445511272299039 & 0.997772443638505 \tabularnewline
33 & 0.00123948015100782 & 0.00247896030201563 & 0.998760519848992 \tabularnewline
34 & 0.00111384365177268 & 0.00222768730354536 & 0.998886156348227 \tabularnewline
35 & 0.000439794117558488 & 0.000879588235116976 & 0.999560205882442 \tabularnewline
36 & 0.0233682983587977 & 0.0467365967175955 & 0.976631701641202 \tabularnewline
37 & 0.195703567348831 & 0.391407134697662 & 0.804296432651169 \tabularnewline
38 & 0.115294210592324 & 0.230588421184649 & 0.884705789407676 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59276&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]17[/C][C]0.178880341166081[/C][C]0.357760682332162[/C][C]0.821119658833919[/C][/ROW]
[ROW][C]18[/C][C]0.181103307737641[/C][C]0.362206615475283[/C][C]0.818896692262359[/C][/ROW]
[ROW][C]19[/C][C]0.0977050454092338[/C][C]0.195410090818468[/C][C]0.902294954590766[/C][/ROW]
[ROW][C]20[/C][C]0.0513025329271525[/C][C]0.102605065854305[/C][C]0.948697467072848[/C][/ROW]
[ROW][C]21[/C][C]0.0231229580446458[/C][C]0.0462459160892916[/C][C]0.976877041955354[/C][/ROW]
[ROW][C]22[/C][C]0.13412888835865[/C][C]0.2682577767173[/C][C]0.86587111164135[/C][/ROW]
[ROW][C]23[/C][C]0.0854344386100902[/C][C]0.170868877220180[/C][C]0.91456556138991[/C][/ROW]
[ROW][C]24[/C][C]0.0551698135868272[/C][C]0.110339627173654[/C][C]0.944830186413173[/C][/ROW]
[ROW][C]25[/C][C]0.038480659361674[/C][C]0.076961318723348[/C][C]0.961519340638326[/C][/ROW]
[ROW][C]26[/C][C]0.0203123529982687[/C][C]0.0406247059965375[/C][C]0.979687647001731[/C][/ROW]
[ROW][C]27[/C][C]0.00972970359330364[/C][C]0.0194594071866073[/C][C]0.990270296406696[/C][/ROW]
[ROW][C]28[/C][C]0.00528936708339018[/C][C]0.0105787341667804[/C][C]0.99471063291661[/C][/ROW]
[ROW][C]29[/C][C]0.0123146804252546[/C][C]0.0246293608505092[/C][C]0.987685319574745[/C][/ROW]
[ROW][C]30[/C][C]0.00973279333350235[/C][C]0.0194655866670047[/C][C]0.990267206666498[/C][/ROW]
[ROW][C]31[/C][C]0.00449762448957547[/C][C]0.00899524897915093[/C][C]0.995502375510425[/C][/ROW]
[ROW][C]32[/C][C]0.00222755636149520[/C][C]0.00445511272299039[/C][C]0.997772443638505[/C][/ROW]
[ROW][C]33[/C][C]0.00123948015100782[/C][C]0.00247896030201563[/C][C]0.998760519848992[/C][/ROW]
[ROW][C]34[/C][C]0.00111384365177268[/C][C]0.00222768730354536[/C][C]0.998886156348227[/C][/ROW]
[ROW][C]35[/C][C]0.000439794117558488[/C][C]0.000879588235116976[/C][C]0.999560205882442[/C][/ROW]
[ROW][C]36[/C][C]0.0233682983587977[/C][C]0.0467365967175955[/C][C]0.976631701641202[/C][/ROW]
[ROW][C]37[/C][C]0.195703567348831[/C][C]0.391407134697662[/C][C]0.804296432651169[/C][/ROW]
[ROW][C]38[/C][C]0.115294210592324[/C][C]0.230588421184649[/C][C]0.884705789407676[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59276&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59276&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.1788803411660810.3577606823321620.821119658833919
180.1811033077376410.3622066154752830.818896692262359
190.09770504540923380.1954100908184680.902294954590766
200.05130253292715250.1026050658543050.948697467072848
210.02312295804464580.04624591608929160.976877041955354
220.134128888358650.26825777671730.86587111164135
230.08543443861009020.1708688772201800.91456556138991
240.05516981358682720.1103396271736540.944830186413173
250.0384806593616740.0769613187233480.961519340638326
260.02031235299826870.04062470599653750.979687647001731
270.009729703593303640.01945940718660730.990270296406696
280.005289367083390180.01057873416678040.99471063291661
290.01231468042525460.02462936085050920.987685319574745
300.009732793333502350.01946558666700470.990267206666498
310.004497624489575470.008995248979150930.995502375510425
320.002227556361495200.004455112722990390.997772443638505
330.001239480151007820.002478960302015630.998760519848992
340.001113843651772680.002227687303545360.998886156348227
350.0004397941175584880.0008795882351169760.999560205882442
360.02336829835879770.04673659671759550.976631701641202
370.1957035673488310.3914071346976620.804296432651169
380.1152942105923240.2305884211846490.884705789407676







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level50.227272727272727NOK
5% type I error level120.545454545454545NOK
10% type I error level130.590909090909091NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 5 & 0.227272727272727 & NOK \tabularnewline
5% type I error level & 12 & 0.545454545454545 & NOK \tabularnewline
10% type I error level & 13 & 0.590909090909091 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59276&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]5[/C][C]0.227272727272727[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]12[/C][C]0.545454545454545[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]13[/C][C]0.590909090909091[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59276&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59276&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level50.227272727272727NOK
5% type I error level120.545454545454545NOK
10% type I error level130.590909090909091NOK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}