Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 09 Dec 2011 09:02:33 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Dec/09/t13234393655s8brmu96upfm0b.htm/, Retrieved Fri, 01 Nov 2024 00:29:57 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=153377, Retrieved Fri, 01 Nov 2024 00:29:57 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact197
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [] [2010-12-05 18:56:24] [b98453cac15ba1066b407e146608df68]
- R PD  [Multiple Regression] [bambix] [2011-12-09 12:38:27] [379dab8110dbf77cfcc4b7951c3a599f]
-   P     [Multiple Regression] [bambix] [2011-12-09 12:42:52] [379dab8110dbf77cfcc4b7951c3a599f]
-           [Multiple Regression] [Multiple Regression] [2011-12-09 13:03:13] [74b1e5a3104ff0b2404b2865a63336ad]
-    D          [Multiple Regression] [Multiple Linear R...] [2011-12-09 14:02:33] [f9bdb25068ab2a4592adc645515299ca] [Current]
-                 [Multiple Regression] [Multiple linear r...] [2011-12-23 09:00:38] [74b1e5a3104ff0b2404b2865a63336ad]
-                 [Multiple Regression] [Multiple linear r...] [2011-12-23 09:00:38] [74b1e5a3104ff0b2404b2865a63336ad]
-    D              [Multiple Regression] [Multiple linear r...] [2011-12-23 09:31:26] [74b1e5a3104ff0b2404b2865a63336ad]
- RMPD              [Pearson Correlation] [Multicolinearitei...] [2011-12-23 10:09:11] [74b1e5a3104ff0b2404b2865a63336ad]
- RMPD              [Pearson Correlation] [Multicolinearitei...] [2011-12-23 10:11:07] [74b1e5a3104ff0b2404b2865a63336ad]
- RMPD              [Pearson Correlation] [Multicolinearitei...] [2011-12-23 10:13:10] [74b1e5a3104ff0b2404b2865a63336ad]
-  M              [Multiple Regression] [] [2011-12-23 14:06:20] [74be16979710d4c4e7c6647856088456]
Feedback Forum

Post a new message
Dataseries X:
252101	62	438	92	34	104	124252	165119
134577	59	330	58	30	111	98956	107269
198520	62	609	62	38	93	98073	93497
189326	94	1015	108	34	119	106816	100269
137449	44	294	55	25	57	41449	91627
65295	27	164	8	31	80	76173	47552
439387	103	1912	134	29	107	177551	233933
33186	19	111	1	18	22	22807	6853
178368	51	698	64	30	103	126938	104380
186657	38	556	77	29	72	61680	98431
265539	97	717	86	39	127	72117	156949
191088	96	495	93	50	168	79738	81817
138866	57	544	44	33	100	57793	59238
296878	66	959	106	46	143	91677	101138
192648	72	540	63	38	79	64631	107158
333462	162	1486	160	52	183	106385	155499
243571	58	635	104	32	123	161961	156274
263451	130	940	86	35	81	112669	121777
155679	49	452	93	25	74	114029	105037
227053	71	617	119	42	158	124550	118661
240028	63	695	107	40	133	105416	131187
388549	90	1046	86	35	128	72875	145026
156540	34	405	50	25	84	81964	107016
148421	43	477	92	46	184	104880	87242
177732	97	1012	123	36	127	76302	91699
191441	106	842	81	35	128	96740	110087
249893	122	994	93	38	118	93071	145447
236812	76	530	113	35	125	78912	143307
142329	45	515	52	28	89	35224	61678
259667	53	766	113	37	122	90694	210080
231625	66	734	112	40	151	125369	165005
176062	67	551	44	42	122	80849	97806
286683	79	718	123	44	162	104434	184471
87485	33	280	38	33	121	65702	27786
322865	83	1055	111	35	132	108179	184458
247082	51	950	77	37	110	63583	98765
346011	106	1038	92	39	135	95066	178441
191653	74	552	74	32	80	62486	100619
114673	31	275	33	17	46	31081	58391
284224	162	986	105	34	127	94584	151672
284195	72	1336	108	33	103	87408	124437
155363	60	565	66	35	95	68966	79929
177306	67	571	69	32	100	88766	123064
144571	49	404	62	35	102	57139	50466
140319	73	985	50	45	45	90586	100991
405267	135	1851	91	38	122	109249	79367
78800	42	330	20	26	66	33032	56968
201970	69	611	101	45	159	96056	106257
302674	99	1249	129	44	153	146648	178412
164733	50	812	93	40	131	80613	98520
194221	68	501	89	33	113	87026	153670
24188	24	218	8	4	7	5950	15049
346142	282	787	80	41	147	131106	174478
65029	17	255	21	18	61	32551	25109
101097	64	454	30	14	41	31701	45824
246088	46	944	86	33	108	91072	116772
273108	75	600	116	49	184	159803	189150
282220	160	977	106	32	115	143950	194404
275505	120	872	127	37	132	112368	185881
214872	74	690	75	32	113	82124	67508
335121	124	1176	138	41	141	144068	188597
267171	107	1013	114	25	65	162627	203618
189637	89	894	55	42	94	55062	87232
229512	78	777	67	35	121	95329	110875
209798	61	521	45	33	112	105612	144756
201345	60	409	88	28	81	62853	129825
163833	114	493	67	31	116	125976	92189
204250	129	757	75	40	132	79146	121158
197813	67	736	114	32	104	108461	96219
132955	60	511	123	25	80	99971	84128
216092	59	789	86	42	145	77826	97960
73566	32	385	22	23	67	22618	23824
213198	67	644	67	42	159	84892	103515
181713	50	664	77	38	90	92059	91313
148698	49	505	105	34	120	77993	85407
300103	70	878	119	38	126	104155	95871
251437	78	769	88	32	118	109840	143846
197295	101	499	78	37	112	238712	155387
158163	55	546	112	34	123	67486	74429
155529	57	551	66	33	98	68007	74004
132672	41	565	58	25	78	48194	71987
377213	102	1087	132	40	119	134796	150629
145905	66	649	30	26	99	38692	68580
223701	87	540	100	40	81	93587	119855
80953	25	437	49	8	27	56622	55792
130805	47	732	26	27	77	15986	25157
135082	48	308	67	32	118	113402	90895
305270	160	1243	57	33	122	97967	117510
271806	95	783	95	50	103	74844	144774
150949	96	933	139	37	129	136051	77529
225805	79	710	73	33	69	50548	103123
197389	68	563	134	34	121	112215	104669
156583	56	508	37	28	81	59591	82414
232718	68	968	108	36	135	59938	82390
261601	70	838	58	32	116	137639	128446
178489	35	523	78	32	123	143372	111542
200657	44	500	88	31	111	138599	136048
259244	69	694	142	35	100	174110	197257
313075	130	1060	127	58	221	135062	162079
346933	100	1232	139	27	95	175681	206286
246440	104	735	108	45	153	130307	109858
252444	58	757	128	37	118	139141	182125
159965	159	574	62	32	50	44244	74168
43287	14	214	13	19	64	43750	19630
172239	68	661	89	22	34	48029	88634
185198	121	640	83	35	76	95216	128321
227681	43	1015	116	36	112	92288	118936
260464	81	893	157	36	115	94588	127044
106288	54	293	28	23	69	197426	178377
109632	77	446	83	36	108	151244	69581
268905	58	538	72	36	130	139206	168019
266805	78	627	134	42	110	106271	113598
23623	11	156	12	1	0	1168	5841
152474	66	577	106	32	83	71764	93116
61857	25	192	23	11	30	25162	24610
144889	43	437	83	40	106	45635	60611
346600	99	1054	126	34	91	101817	226620
21054	16	146	4	0	0	855	6622
224051	45	751	71	27	69	100174	121996
31414	19	200	18	8	9	14116	13155
261043	105	1050	98	35	123	85008	154158
206108	58	601	66	44	150	124254	78489
154984	74	430	44	40	125	105793	22007
112933	45	467	29	28	81	117129	72530
38214	34	276	16	8	21	8773	13983
158671	33	528	56	35	124	94747	73397
302148	71	898	112	47	168	107549	143878
177918	55	411	46	46	149	97392	119956
350552	70	1362	129	42	147	126893	181558
275578	91	743	139	48	145	118850	208236
368746	106	1069	136	49	172	234853	237085
172464	31	431	66	35	126	74783	110297
94381	35	380	42	32	89	66089	61394
244295	281	790	70	36	137	95684	81420
382487	154	1367	97	42	149	139537	191154
114525	40	449	49	35	121	144253	11798
345884	120	1495	113	42	149	153824	135724
147989	72	651	55	34	93	63995	68614
216638	45	494	100	36	119	84891	139926
192862	72	667	80	36	102	61263	105203
184818	107	510	29	32	45	106221	80338
336707	105	1472	95	33	104	113587	121376
215836	76	675	114	35	111	113864	124922
173260	63	716	41	21	78	37238	10901
271773	89	814	128	40	120	119906	135471
130908	52	556	142	49	176	135096	66395
204009	75	887	88	33	109	151611	134041
245514	92	663	147	39	132	144645	153554
1	0	0	0	0	0	0	0
14688	10	85	4	0	0	6023	7953
98	1	0	0	0	0	0	0
455	2	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
195765	75	607	56	33	78	77457	98922
326038	121	934	121	42	104	62464	165395
0	0	0	0	0	0	0	0
203	4	0	0	0	0	0	0
7199	5	74	7	0	0	1644	4245
46660	20	259	12	5	13	6179	21509
17547	5	69	0	1	4	3926	7670
107465	38	267	37	38	65	42087	15167
969	2	0	0	0	0	0	0
173102	58	517	47	28	55	87656	63891




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 6 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ wold.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=153377&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]6 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ wold.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=153377&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=153377&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net







Multiple Linear Regression - Estimated Regression Equation
Time[t] = -5186.76981737615 + 191.170682156564Logins[t] + 127.347978324424CompendiumViews[t] + 40.5306340860248BloggedComputations[t] + 603.158481775153ReviewedCompendiums[t] + 190.102593234003LongFeedbackmessages[t] -0.149601708866442Characters[t] + 0.717931075686711WritingTime[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Time[t] =  -5186.76981737615 +  191.170682156564Logins[t] +  127.347978324424CompendiumViews[t] +  40.5306340860248BloggedComputations[t] +  603.158481775153ReviewedCompendiums[t] +  190.102593234003LongFeedbackmessages[t] -0.149601708866442Characters[t] +  0.717931075686711WritingTime[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=153377&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Time[t] =  -5186.76981737615 +  191.170682156564Logins[t] +  127.347978324424CompendiumViews[t] +  40.5306340860248BloggedComputations[t] +  603.158481775153ReviewedCompendiums[t] +  190.102593234003LongFeedbackmessages[t] -0.149601708866442Characters[t] +  0.717931075686711WritingTime[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=153377&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=153377&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Time[t] = -5186.76981737615 + 191.170682156564Logins[t] + 127.347978324424CompendiumViews[t] + 40.5306340860248BloggedComputations[t] + 603.158481775153ReviewedCompendiums[t] + 190.102593234003LongFeedbackmessages[t] -0.149601708866442Characters[t] + 0.717931075686711WritingTime[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-5186.769817376155950.233765-0.87170.3847160.192358
Logins191.17068215656471.8225832.66170.0085890.004294
CompendiumViews127.34797832442410.17717312.513100
BloggedComputations40.5306340860248104.729440.3870.6992810.349641
ReviewedCompendiums603.158481775153426.8396641.41310.1596240.079812
LongFeedbackmessages190.102593234003119.6335641.5890.1140760.057038
Characters-0.1496017088664420.078974-1.89430.0600350.030017
WritingTime0.7179310756867110.0741129.687100

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -5186.76981737615 & 5950.233765 & -0.8717 & 0.384716 & 0.192358 \tabularnewline
Logins & 191.170682156564 & 71.822583 & 2.6617 & 0.008589 & 0.004294 \tabularnewline
CompendiumViews & 127.347978324424 & 10.177173 & 12.5131 & 0 & 0 \tabularnewline
BloggedComputations & 40.5306340860248 & 104.72944 & 0.387 & 0.699281 & 0.349641 \tabularnewline
ReviewedCompendiums & 603.158481775153 & 426.839664 & 1.4131 & 0.159624 & 0.079812 \tabularnewline
LongFeedbackmessages & 190.102593234003 & 119.633564 & 1.589 & 0.114076 & 0.057038 \tabularnewline
Characters & -0.149601708866442 & 0.078974 & -1.8943 & 0.060035 & 0.030017 \tabularnewline
WritingTime & 0.717931075686711 & 0.074112 & 9.6871 & 0 & 0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=153377&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-5186.76981737615[/C][C]5950.233765[/C][C]-0.8717[/C][C]0.384716[/C][C]0.192358[/C][/ROW]
[ROW][C]Logins[/C][C]191.170682156564[/C][C]71.822583[/C][C]2.6617[/C][C]0.008589[/C][C]0.004294[/C][/ROW]
[ROW][C]CompendiumViews[/C][C]127.347978324424[/C][C]10.177173[/C][C]12.5131[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]BloggedComputations[/C][C]40.5306340860248[/C][C]104.72944[/C][C]0.387[/C][C]0.699281[/C][C]0.349641[/C][/ROW]
[ROW][C]ReviewedCompendiums[/C][C]603.158481775153[/C][C]426.839664[/C][C]1.4131[/C][C]0.159624[/C][C]0.079812[/C][/ROW]
[ROW][C]LongFeedbackmessages[/C][C]190.102593234003[/C][C]119.633564[/C][C]1.589[/C][C]0.114076[/C][C]0.057038[/C][/ROW]
[ROW][C]Characters[/C][C]-0.149601708866442[/C][C]0.078974[/C][C]-1.8943[/C][C]0.060035[/C][C]0.030017[/C][/ROW]
[ROW][C]WritingTime[/C][C]0.717931075686711[/C][C]0.074112[/C][C]9.6871[/C][C]0[/C][C]0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=153377&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=153377&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-5186.769817376155950.233765-0.87170.3847160.192358
Logins191.17068215656471.8225832.66170.0085890.004294
CompendiumViews127.34797832442410.17717312.513100
BloggedComputations40.5306340860248104.729440.3870.6992810.349641
ReviewedCompendiums603.158481775153426.8396641.41310.1596240.079812
LongFeedbackmessages190.102593234003119.6335641.5890.1140760.057038
Characters-0.1496017088664420.078974-1.89430.0600350.030017
WritingTime0.7179310756867110.0741129.687100







Multiple Linear Regression - Regression Statistics
Multiple R0.960175168957079
R-squared0.921936355081755
Adjusted R-squared0.918433499220039
F-TEST (value)263.195629930967
F-TEST (DF numerator)7
F-TEST (DF denominator)156
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation27797.9638397288
Sum Squared Residuals120545379807.04

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.960175168957079 \tabularnewline
R-squared & 0.921936355081755 \tabularnewline
Adjusted R-squared & 0.918433499220039 \tabularnewline
F-TEST (value) & 263.195629930967 \tabularnewline
F-TEST (DF numerator) & 7 \tabularnewline
F-TEST (DF denominator) & 156 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 27797.9638397288 \tabularnewline
Sum Squared Residuals & 120545379807.04 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=153377&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.960175168957079[/C][/ROW]
[ROW][C]R-squared[/C][C]0.921936355081755[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.918433499220039[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]263.195629930967[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]7[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]156[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]27797.9638397288[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]120545379807.04[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=153377&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=153377&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.960175168957079
R-squared0.921936355081755
Adjusted R-squared0.918433499220039
F-TEST (value)263.195629930967
F-TEST (DF numerator)7
F-TEST (DF denominator)156
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation27797.9638397288
Sum Squared Residuals120545379807.04







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1252101206406.85315127545694.1468487248
2134577151871.81421139-17294.8142113896
3198520179785.70745727918734.2925427215
4189326245554.752654877-56228.7526548766
5137449128390.0699994839058.93000051714
66529577833.7200540658-12538.7200540658
7439387442642.660733768-3255.66073376783
83318629168.75458236064017.24541763937
9178368189668.60994101-11300.6099410097
10186657168622.27386994118034.7261300588
11265539257706.8694314037832.13056859741
12191088188877.3994201822210.60057981831
13138866149567.965896811-10701.9658968113
14296878247678.49189437249199.5081056283
15192648185100.1348761377547.8651238633
16333462383382.080090427-49920.0800904275
17243571221630.29086539521940.709134605
18263451249939.02760104613511.9723989539
19155679153008.1758612042670.82413879587
20227053213709.58919642113343.4108035791
21240028227523.40039654312504.5996034569
22388549287370.337880442101178.662119558
23156540150531.2337078356008.76629216484
24148421177175.056507882-28754.0565078819
25177732247493.595212801-69761.5952128013
26191441235593.389410819-44152.3894108189
27249893284338.761658767-34445.7616587672
28236812217369.14181993619442.8581800641
29142329143926.263269845-1597.26326984493
30259667289838.152581712-30171.1525817117
31231625257981.973666869-26356.9736668686
32176062186221.740681233-10159.7406812327
33286683280486.3824037716196.61759622949
348748591345.4057928805-3860.40579288054
35322865311979.8705820110885.1294179898
36247082233286.859522213795.1404778005
37346011314066.67622522331944.3237747772
38191653179653.98501947511999.0149805246
3911467393367.082499619421305.9175003806
40284224294994.235700107-10770.2357001069
41284195298837.32691893-14642.3269189295
42155363167146.475429236-11783.4754292357
43177306196517.230611572-19211.2306115716
44144571126326.10515938118244.894840619
45140319230882.485574625-90563.4855746252
46405267346779.40512817958487.5948718211
4778800109864.189914022-31064.1899140224
48201970209190.720616795-7220.7206167947
49302674339798.602076907-37124.6020769074
50164733219248.17766435-54515.1776643496
51194221213912.453162451-19691.4531624512
522418841144.7975717867-16956.7975717867
53346142310512.74775818135629.2522418194
546502966997.9665811531-1968.96658115313
55101097110474.429929452-9377.42992945231
56246088237954.2383395378133.76166046324
57273108266684.8757391966423.12426080405
58282220313312.137848945-31092.1378489454
59275505297998.247259621-22493.2472596208
60214872176832.62803327238039.3719667278
61335121339253.636270524-4132.63627052382
62267171298182.530767768-31011.5307677677
63189637225497.192690576-35860.1926905765
64229512220841.6623883578670.33761164316
65209798203967.6324911625830.36750883838
66201345178024.72328158123320.2767184193
67163833170193.730556674-6360.73055667431
68204250243279.063324863-39029.0633248632
69197813197894.670558974-81.6705589743639
70132955152072.998629763-19117.9986297631
71216092221638.647692747-5546.64769274729
727356691181.1549399555-17615.1549399555
73213198209524.9320011893673.06799881074
74181713183865.193018655-2152.19301865456
75148698165715.192111152-17017.1921111524
76300103224949.80158378175153.1984162187
77251437239794.27375164611642.7262483539
78197295200283.286921728-2988.28692172828
79158163166627.923339868-8464.92333986833
80155529160043.808917735-4514.80891773494
81132672151332.376586313-18660.3765863131
82377213292814.01181770384398.9881822971
83145905169244.853267544-23339.8532675436
84223701195837.55450574427863.4454942561
858095398771.6653213231-17818.6653213232
86130805144663.406703757-13858.4067037565
87135082135952.542287914-870.542287913814
88305270298809.1188923926460.88110760812
89271806259017.77669862212788.2233013782
90150949219762.152211093-68813.152211093
91225805202785.96294159923019.0370584006
92197389186808.22749572210580.7725042775
93156583154250.5986136252332.40138637518
94232718233024.057598891-306.057598890709
95261601230240.87811937731360.1218806234
96178489172583.0484057225905.95159427778
97200657187203.16568114513453.8343188553
98259244257829.4371003211414.56289967932
99313075332953.576276773-19878.5762767725
100346933332618.74326083114314.2567391688
101246440228277.20435686518162.7956431355
102252444262177.906115655-9733.90611565451
103159965176254.742610021-16289.7426100207
1044328756443.4747108882-13156.4747108882
105172239171777.93393165461.066068350118
106185198216251.132680022-31053.1326800215
107227681251579.924764748-23898.9247647478
108260464251016.9223396229447.07766037841
109106288169101.11094962-62813.1109496203
110109632139267.400405251-29635.4004052512
111268905223560.19612610845344.803873892
112266805206903.98339098759901.0166090128
1132362321890.61901289371732.38098710626
114152474176400.965575048-23926.965575048
1156185751217.340329505310639.6596704947
116144889143013.3392704071875.66072959288
117346600338343.0243100238256.97568997666
1182105421253.1185909555-199.118590955496
119224051203932.79348798420118.2065120161
1203141438513.4169936391-7099.41699363909
121261043295024.173718445-33981.1737184451
122206108177927.73021965228180.2697803483
123154984113364.69826328341619.3017367165
124112933130898.395049068-17965.3950490682
1253821454653.3622904218-16439.3622904218
126158671153834.2532332594836.74676674072
127302148274774.92159622827373.0784037721
128177918187152.752999208-9234.7529992084
129350552351512.03424484-960.034244839599
130275578300698.483813935-25120.4838139349
131368746354053.16814573314692.8318542671
132172464171362.9747074551101.02529254545
13394381122008.557791065-27627.5577910646
134244295243871.458019134423.541980865535
135382487372288.03892871110198.9610712893
13611452592627.916972053721897.0830279463
137345884340804.9879664015079.01203359905
138147989171583.529081205-23594.5290812055
139216638202472.17454844714165.8254515533
140192862204228.694886127-11366.6948861274
141184818151033.34226067933784.6577393211
142336707316014.47867324220692.5213267581
143215836214785.6512509871050.34874901268
144173260129449.52024712543810.4797528752
145271773246935.94512375224837.0548762482
146130908171784.194968726-40876.1949687259
147204009239851.731111959-35842.7311119593
148245514240009.4180938975504.5819061033
1491-5186.769817376155187.76981737615
1501468812520.29245054352167.70754945652
15198-4995.599135219595093.59913521959
152455-4804.428453063035259.42845306303
1530-5186.769817376155186.76981737615
1540-5186.769817376155186.76981737615
155195765182884.68017235412880.3198276459
156326038296292.91625445229745.0837455478
1570-5186.769817376155186.76981737615
158203-4422.087088749914625.08708874991
15971998278.22063492988-1079.22063492988
1604666052110.8544895908-5450.85448959081
1611754710838.85799401056708.14200598948
16210746577448.524149921930016.4758500781
163969-4804.428453063035773.42845306303
164173102133744.90142535239357.0985746477

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 252101 & 206406.853151275 & 45694.1468487248 \tabularnewline
2 & 134577 & 151871.81421139 & -17294.8142113896 \tabularnewline
3 & 198520 & 179785.707457279 & 18734.2925427215 \tabularnewline
4 & 189326 & 245554.752654877 & -56228.7526548766 \tabularnewline
5 & 137449 & 128390.069999483 & 9058.93000051714 \tabularnewline
6 & 65295 & 77833.7200540658 & -12538.7200540658 \tabularnewline
7 & 439387 & 442642.660733768 & -3255.66073376783 \tabularnewline
8 & 33186 & 29168.7545823606 & 4017.24541763937 \tabularnewline
9 & 178368 & 189668.60994101 & -11300.6099410097 \tabularnewline
10 & 186657 & 168622.273869941 & 18034.7261300588 \tabularnewline
11 & 265539 & 257706.869431403 & 7832.13056859741 \tabularnewline
12 & 191088 & 188877.399420182 & 2210.60057981831 \tabularnewline
13 & 138866 & 149567.965896811 & -10701.9658968113 \tabularnewline
14 & 296878 & 247678.491894372 & 49199.5081056283 \tabularnewline
15 & 192648 & 185100.134876137 & 7547.8651238633 \tabularnewline
16 & 333462 & 383382.080090427 & -49920.0800904275 \tabularnewline
17 & 243571 & 221630.290865395 & 21940.709134605 \tabularnewline
18 & 263451 & 249939.027601046 & 13511.9723989539 \tabularnewline
19 & 155679 & 153008.175861204 & 2670.82413879587 \tabularnewline
20 & 227053 & 213709.589196421 & 13343.4108035791 \tabularnewline
21 & 240028 & 227523.400396543 & 12504.5996034569 \tabularnewline
22 & 388549 & 287370.337880442 & 101178.662119558 \tabularnewline
23 & 156540 & 150531.233707835 & 6008.76629216484 \tabularnewline
24 & 148421 & 177175.056507882 & -28754.0565078819 \tabularnewline
25 & 177732 & 247493.595212801 & -69761.5952128013 \tabularnewline
26 & 191441 & 235593.389410819 & -44152.3894108189 \tabularnewline
27 & 249893 & 284338.761658767 & -34445.7616587672 \tabularnewline
28 & 236812 & 217369.141819936 & 19442.8581800641 \tabularnewline
29 & 142329 & 143926.263269845 & -1597.26326984493 \tabularnewline
30 & 259667 & 289838.152581712 & -30171.1525817117 \tabularnewline
31 & 231625 & 257981.973666869 & -26356.9736668686 \tabularnewline
32 & 176062 & 186221.740681233 & -10159.7406812327 \tabularnewline
33 & 286683 & 280486.382403771 & 6196.61759622949 \tabularnewline
34 & 87485 & 91345.4057928805 & -3860.40579288054 \tabularnewline
35 & 322865 & 311979.87058201 & 10885.1294179898 \tabularnewline
36 & 247082 & 233286.8595222 & 13795.1404778005 \tabularnewline
37 & 346011 & 314066.676225223 & 31944.3237747772 \tabularnewline
38 & 191653 & 179653.985019475 & 11999.0149805246 \tabularnewline
39 & 114673 & 93367.0824996194 & 21305.9175003806 \tabularnewline
40 & 284224 & 294994.235700107 & -10770.2357001069 \tabularnewline
41 & 284195 & 298837.32691893 & -14642.3269189295 \tabularnewline
42 & 155363 & 167146.475429236 & -11783.4754292357 \tabularnewline
43 & 177306 & 196517.230611572 & -19211.2306115716 \tabularnewline
44 & 144571 & 126326.105159381 & 18244.894840619 \tabularnewline
45 & 140319 & 230882.485574625 & -90563.4855746252 \tabularnewline
46 & 405267 & 346779.405128179 & 58487.5948718211 \tabularnewline
47 & 78800 & 109864.189914022 & -31064.1899140224 \tabularnewline
48 & 201970 & 209190.720616795 & -7220.7206167947 \tabularnewline
49 & 302674 & 339798.602076907 & -37124.6020769074 \tabularnewline
50 & 164733 & 219248.17766435 & -54515.1776643496 \tabularnewline
51 & 194221 & 213912.453162451 & -19691.4531624512 \tabularnewline
52 & 24188 & 41144.7975717867 & -16956.7975717867 \tabularnewline
53 & 346142 & 310512.747758181 & 35629.2522418194 \tabularnewline
54 & 65029 & 66997.9665811531 & -1968.96658115313 \tabularnewline
55 & 101097 & 110474.429929452 & -9377.42992945231 \tabularnewline
56 & 246088 & 237954.238339537 & 8133.76166046324 \tabularnewline
57 & 273108 & 266684.875739196 & 6423.12426080405 \tabularnewline
58 & 282220 & 313312.137848945 & -31092.1378489454 \tabularnewline
59 & 275505 & 297998.247259621 & -22493.2472596208 \tabularnewline
60 & 214872 & 176832.628033272 & 38039.3719667278 \tabularnewline
61 & 335121 & 339253.636270524 & -4132.63627052382 \tabularnewline
62 & 267171 & 298182.530767768 & -31011.5307677677 \tabularnewline
63 & 189637 & 225497.192690576 & -35860.1926905765 \tabularnewline
64 & 229512 & 220841.662388357 & 8670.33761164316 \tabularnewline
65 & 209798 & 203967.632491162 & 5830.36750883838 \tabularnewline
66 & 201345 & 178024.723281581 & 23320.2767184193 \tabularnewline
67 & 163833 & 170193.730556674 & -6360.73055667431 \tabularnewline
68 & 204250 & 243279.063324863 & -39029.0633248632 \tabularnewline
69 & 197813 & 197894.670558974 & -81.6705589743639 \tabularnewline
70 & 132955 & 152072.998629763 & -19117.9986297631 \tabularnewline
71 & 216092 & 221638.647692747 & -5546.64769274729 \tabularnewline
72 & 73566 & 91181.1549399555 & -17615.1549399555 \tabularnewline
73 & 213198 & 209524.932001189 & 3673.06799881074 \tabularnewline
74 & 181713 & 183865.193018655 & -2152.19301865456 \tabularnewline
75 & 148698 & 165715.192111152 & -17017.1921111524 \tabularnewline
76 & 300103 & 224949.801583781 & 75153.1984162187 \tabularnewline
77 & 251437 & 239794.273751646 & 11642.7262483539 \tabularnewline
78 & 197295 & 200283.286921728 & -2988.28692172828 \tabularnewline
79 & 158163 & 166627.923339868 & -8464.92333986833 \tabularnewline
80 & 155529 & 160043.808917735 & -4514.80891773494 \tabularnewline
81 & 132672 & 151332.376586313 & -18660.3765863131 \tabularnewline
82 & 377213 & 292814.011817703 & 84398.9881822971 \tabularnewline
83 & 145905 & 169244.853267544 & -23339.8532675436 \tabularnewline
84 & 223701 & 195837.554505744 & 27863.4454942561 \tabularnewline
85 & 80953 & 98771.6653213231 & -17818.6653213232 \tabularnewline
86 & 130805 & 144663.406703757 & -13858.4067037565 \tabularnewline
87 & 135082 & 135952.542287914 & -870.542287913814 \tabularnewline
88 & 305270 & 298809.118892392 & 6460.88110760812 \tabularnewline
89 & 271806 & 259017.776698622 & 12788.2233013782 \tabularnewline
90 & 150949 & 219762.152211093 & -68813.152211093 \tabularnewline
91 & 225805 & 202785.962941599 & 23019.0370584006 \tabularnewline
92 & 197389 & 186808.227495722 & 10580.7725042775 \tabularnewline
93 & 156583 & 154250.598613625 & 2332.40138637518 \tabularnewline
94 & 232718 & 233024.057598891 & -306.057598890709 \tabularnewline
95 & 261601 & 230240.878119377 & 31360.1218806234 \tabularnewline
96 & 178489 & 172583.048405722 & 5905.95159427778 \tabularnewline
97 & 200657 & 187203.165681145 & 13453.8343188553 \tabularnewline
98 & 259244 & 257829.437100321 & 1414.56289967932 \tabularnewline
99 & 313075 & 332953.576276773 & -19878.5762767725 \tabularnewline
100 & 346933 & 332618.743260831 & 14314.2567391688 \tabularnewline
101 & 246440 & 228277.204356865 & 18162.7956431355 \tabularnewline
102 & 252444 & 262177.906115655 & -9733.90611565451 \tabularnewline
103 & 159965 & 176254.742610021 & -16289.7426100207 \tabularnewline
104 & 43287 & 56443.4747108882 & -13156.4747108882 \tabularnewline
105 & 172239 & 171777.93393165 & 461.066068350118 \tabularnewline
106 & 185198 & 216251.132680022 & -31053.1326800215 \tabularnewline
107 & 227681 & 251579.924764748 & -23898.9247647478 \tabularnewline
108 & 260464 & 251016.922339622 & 9447.07766037841 \tabularnewline
109 & 106288 & 169101.11094962 & -62813.1109496203 \tabularnewline
110 & 109632 & 139267.400405251 & -29635.4004052512 \tabularnewline
111 & 268905 & 223560.196126108 & 45344.803873892 \tabularnewline
112 & 266805 & 206903.983390987 & 59901.0166090128 \tabularnewline
113 & 23623 & 21890.6190128937 & 1732.38098710626 \tabularnewline
114 & 152474 & 176400.965575048 & -23926.965575048 \tabularnewline
115 & 61857 & 51217.3403295053 & 10639.6596704947 \tabularnewline
116 & 144889 & 143013.339270407 & 1875.66072959288 \tabularnewline
117 & 346600 & 338343.024310023 & 8256.97568997666 \tabularnewline
118 & 21054 & 21253.1185909555 & -199.118590955496 \tabularnewline
119 & 224051 & 203932.793487984 & 20118.2065120161 \tabularnewline
120 & 31414 & 38513.4169936391 & -7099.41699363909 \tabularnewline
121 & 261043 & 295024.173718445 & -33981.1737184451 \tabularnewline
122 & 206108 & 177927.730219652 & 28180.2697803483 \tabularnewline
123 & 154984 & 113364.698263283 & 41619.3017367165 \tabularnewline
124 & 112933 & 130898.395049068 & -17965.3950490682 \tabularnewline
125 & 38214 & 54653.3622904218 & -16439.3622904218 \tabularnewline
126 & 158671 & 153834.253233259 & 4836.74676674072 \tabularnewline
127 & 302148 & 274774.921596228 & 27373.0784037721 \tabularnewline
128 & 177918 & 187152.752999208 & -9234.7529992084 \tabularnewline
129 & 350552 & 351512.03424484 & -960.034244839599 \tabularnewline
130 & 275578 & 300698.483813935 & -25120.4838139349 \tabularnewline
131 & 368746 & 354053.168145733 & 14692.8318542671 \tabularnewline
132 & 172464 & 171362.974707455 & 1101.02529254545 \tabularnewline
133 & 94381 & 122008.557791065 & -27627.5577910646 \tabularnewline
134 & 244295 & 243871.458019134 & 423.541980865535 \tabularnewline
135 & 382487 & 372288.038928711 & 10198.9610712893 \tabularnewline
136 & 114525 & 92627.9169720537 & 21897.0830279463 \tabularnewline
137 & 345884 & 340804.987966401 & 5079.01203359905 \tabularnewline
138 & 147989 & 171583.529081205 & -23594.5290812055 \tabularnewline
139 & 216638 & 202472.174548447 & 14165.8254515533 \tabularnewline
140 & 192862 & 204228.694886127 & -11366.6948861274 \tabularnewline
141 & 184818 & 151033.342260679 & 33784.6577393211 \tabularnewline
142 & 336707 & 316014.478673242 & 20692.5213267581 \tabularnewline
143 & 215836 & 214785.651250987 & 1050.34874901268 \tabularnewline
144 & 173260 & 129449.520247125 & 43810.4797528752 \tabularnewline
145 & 271773 & 246935.945123752 & 24837.0548762482 \tabularnewline
146 & 130908 & 171784.194968726 & -40876.1949687259 \tabularnewline
147 & 204009 & 239851.731111959 & -35842.7311119593 \tabularnewline
148 & 245514 & 240009.418093897 & 5504.5819061033 \tabularnewline
149 & 1 & -5186.76981737615 & 5187.76981737615 \tabularnewline
150 & 14688 & 12520.2924505435 & 2167.70754945652 \tabularnewline
151 & 98 & -4995.59913521959 & 5093.59913521959 \tabularnewline
152 & 455 & -4804.42845306303 & 5259.42845306303 \tabularnewline
153 & 0 & -5186.76981737615 & 5186.76981737615 \tabularnewline
154 & 0 & -5186.76981737615 & 5186.76981737615 \tabularnewline
155 & 195765 & 182884.680172354 & 12880.3198276459 \tabularnewline
156 & 326038 & 296292.916254452 & 29745.0837455478 \tabularnewline
157 & 0 & -5186.76981737615 & 5186.76981737615 \tabularnewline
158 & 203 & -4422.08708874991 & 4625.08708874991 \tabularnewline
159 & 7199 & 8278.22063492988 & -1079.22063492988 \tabularnewline
160 & 46660 & 52110.8544895908 & -5450.85448959081 \tabularnewline
161 & 17547 & 10838.8579940105 & 6708.14200598948 \tabularnewline
162 & 107465 & 77448.5241499219 & 30016.4758500781 \tabularnewline
163 & 969 & -4804.42845306303 & 5773.42845306303 \tabularnewline
164 & 173102 & 133744.901425352 & 39357.0985746477 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=153377&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]252101[/C][C]206406.853151275[/C][C]45694.1468487248[/C][/ROW]
[ROW][C]2[/C][C]134577[/C][C]151871.81421139[/C][C]-17294.8142113896[/C][/ROW]
[ROW][C]3[/C][C]198520[/C][C]179785.707457279[/C][C]18734.2925427215[/C][/ROW]
[ROW][C]4[/C][C]189326[/C][C]245554.752654877[/C][C]-56228.7526548766[/C][/ROW]
[ROW][C]5[/C][C]137449[/C][C]128390.069999483[/C][C]9058.93000051714[/C][/ROW]
[ROW][C]6[/C][C]65295[/C][C]77833.7200540658[/C][C]-12538.7200540658[/C][/ROW]
[ROW][C]7[/C][C]439387[/C][C]442642.660733768[/C][C]-3255.66073376783[/C][/ROW]
[ROW][C]8[/C][C]33186[/C][C]29168.7545823606[/C][C]4017.24541763937[/C][/ROW]
[ROW][C]9[/C][C]178368[/C][C]189668.60994101[/C][C]-11300.6099410097[/C][/ROW]
[ROW][C]10[/C][C]186657[/C][C]168622.273869941[/C][C]18034.7261300588[/C][/ROW]
[ROW][C]11[/C][C]265539[/C][C]257706.869431403[/C][C]7832.13056859741[/C][/ROW]
[ROW][C]12[/C][C]191088[/C][C]188877.399420182[/C][C]2210.60057981831[/C][/ROW]
[ROW][C]13[/C][C]138866[/C][C]149567.965896811[/C][C]-10701.9658968113[/C][/ROW]
[ROW][C]14[/C][C]296878[/C][C]247678.491894372[/C][C]49199.5081056283[/C][/ROW]
[ROW][C]15[/C][C]192648[/C][C]185100.134876137[/C][C]7547.8651238633[/C][/ROW]
[ROW][C]16[/C][C]333462[/C][C]383382.080090427[/C][C]-49920.0800904275[/C][/ROW]
[ROW][C]17[/C][C]243571[/C][C]221630.290865395[/C][C]21940.709134605[/C][/ROW]
[ROW][C]18[/C][C]263451[/C][C]249939.027601046[/C][C]13511.9723989539[/C][/ROW]
[ROW][C]19[/C][C]155679[/C][C]153008.175861204[/C][C]2670.82413879587[/C][/ROW]
[ROW][C]20[/C][C]227053[/C][C]213709.589196421[/C][C]13343.4108035791[/C][/ROW]
[ROW][C]21[/C][C]240028[/C][C]227523.400396543[/C][C]12504.5996034569[/C][/ROW]
[ROW][C]22[/C][C]388549[/C][C]287370.337880442[/C][C]101178.662119558[/C][/ROW]
[ROW][C]23[/C][C]156540[/C][C]150531.233707835[/C][C]6008.76629216484[/C][/ROW]
[ROW][C]24[/C][C]148421[/C][C]177175.056507882[/C][C]-28754.0565078819[/C][/ROW]
[ROW][C]25[/C][C]177732[/C][C]247493.595212801[/C][C]-69761.5952128013[/C][/ROW]
[ROW][C]26[/C][C]191441[/C][C]235593.389410819[/C][C]-44152.3894108189[/C][/ROW]
[ROW][C]27[/C][C]249893[/C][C]284338.761658767[/C][C]-34445.7616587672[/C][/ROW]
[ROW][C]28[/C][C]236812[/C][C]217369.141819936[/C][C]19442.8581800641[/C][/ROW]
[ROW][C]29[/C][C]142329[/C][C]143926.263269845[/C][C]-1597.26326984493[/C][/ROW]
[ROW][C]30[/C][C]259667[/C][C]289838.152581712[/C][C]-30171.1525817117[/C][/ROW]
[ROW][C]31[/C][C]231625[/C][C]257981.973666869[/C][C]-26356.9736668686[/C][/ROW]
[ROW][C]32[/C][C]176062[/C][C]186221.740681233[/C][C]-10159.7406812327[/C][/ROW]
[ROW][C]33[/C][C]286683[/C][C]280486.382403771[/C][C]6196.61759622949[/C][/ROW]
[ROW][C]34[/C][C]87485[/C][C]91345.4057928805[/C][C]-3860.40579288054[/C][/ROW]
[ROW][C]35[/C][C]322865[/C][C]311979.87058201[/C][C]10885.1294179898[/C][/ROW]
[ROW][C]36[/C][C]247082[/C][C]233286.8595222[/C][C]13795.1404778005[/C][/ROW]
[ROW][C]37[/C][C]346011[/C][C]314066.676225223[/C][C]31944.3237747772[/C][/ROW]
[ROW][C]38[/C][C]191653[/C][C]179653.985019475[/C][C]11999.0149805246[/C][/ROW]
[ROW][C]39[/C][C]114673[/C][C]93367.0824996194[/C][C]21305.9175003806[/C][/ROW]
[ROW][C]40[/C][C]284224[/C][C]294994.235700107[/C][C]-10770.2357001069[/C][/ROW]
[ROW][C]41[/C][C]284195[/C][C]298837.32691893[/C][C]-14642.3269189295[/C][/ROW]
[ROW][C]42[/C][C]155363[/C][C]167146.475429236[/C][C]-11783.4754292357[/C][/ROW]
[ROW][C]43[/C][C]177306[/C][C]196517.230611572[/C][C]-19211.2306115716[/C][/ROW]
[ROW][C]44[/C][C]144571[/C][C]126326.105159381[/C][C]18244.894840619[/C][/ROW]
[ROW][C]45[/C][C]140319[/C][C]230882.485574625[/C][C]-90563.4855746252[/C][/ROW]
[ROW][C]46[/C][C]405267[/C][C]346779.405128179[/C][C]58487.5948718211[/C][/ROW]
[ROW][C]47[/C][C]78800[/C][C]109864.189914022[/C][C]-31064.1899140224[/C][/ROW]
[ROW][C]48[/C][C]201970[/C][C]209190.720616795[/C][C]-7220.7206167947[/C][/ROW]
[ROW][C]49[/C][C]302674[/C][C]339798.602076907[/C][C]-37124.6020769074[/C][/ROW]
[ROW][C]50[/C][C]164733[/C][C]219248.17766435[/C][C]-54515.1776643496[/C][/ROW]
[ROW][C]51[/C][C]194221[/C][C]213912.453162451[/C][C]-19691.4531624512[/C][/ROW]
[ROW][C]52[/C][C]24188[/C][C]41144.7975717867[/C][C]-16956.7975717867[/C][/ROW]
[ROW][C]53[/C][C]346142[/C][C]310512.747758181[/C][C]35629.2522418194[/C][/ROW]
[ROW][C]54[/C][C]65029[/C][C]66997.9665811531[/C][C]-1968.96658115313[/C][/ROW]
[ROW][C]55[/C][C]101097[/C][C]110474.429929452[/C][C]-9377.42992945231[/C][/ROW]
[ROW][C]56[/C][C]246088[/C][C]237954.238339537[/C][C]8133.76166046324[/C][/ROW]
[ROW][C]57[/C][C]273108[/C][C]266684.875739196[/C][C]6423.12426080405[/C][/ROW]
[ROW][C]58[/C][C]282220[/C][C]313312.137848945[/C][C]-31092.1378489454[/C][/ROW]
[ROW][C]59[/C][C]275505[/C][C]297998.247259621[/C][C]-22493.2472596208[/C][/ROW]
[ROW][C]60[/C][C]214872[/C][C]176832.628033272[/C][C]38039.3719667278[/C][/ROW]
[ROW][C]61[/C][C]335121[/C][C]339253.636270524[/C][C]-4132.63627052382[/C][/ROW]
[ROW][C]62[/C][C]267171[/C][C]298182.530767768[/C][C]-31011.5307677677[/C][/ROW]
[ROW][C]63[/C][C]189637[/C][C]225497.192690576[/C][C]-35860.1926905765[/C][/ROW]
[ROW][C]64[/C][C]229512[/C][C]220841.662388357[/C][C]8670.33761164316[/C][/ROW]
[ROW][C]65[/C][C]209798[/C][C]203967.632491162[/C][C]5830.36750883838[/C][/ROW]
[ROW][C]66[/C][C]201345[/C][C]178024.723281581[/C][C]23320.2767184193[/C][/ROW]
[ROW][C]67[/C][C]163833[/C][C]170193.730556674[/C][C]-6360.73055667431[/C][/ROW]
[ROW][C]68[/C][C]204250[/C][C]243279.063324863[/C][C]-39029.0633248632[/C][/ROW]
[ROW][C]69[/C][C]197813[/C][C]197894.670558974[/C][C]-81.6705589743639[/C][/ROW]
[ROW][C]70[/C][C]132955[/C][C]152072.998629763[/C][C]-19117.9986297631[/C][/ROW]
[ROW][C]71[/C][C]216092[/C][C]221638.647692747[/C][C]-5546.64769274729[/C][/ROW]
[ROW][C]72[/C][C]73566[/C][C]91181.1549399555[/C][C]-17615.1549399555[/C][/ROW]
[ROW][C]73[/C][C]213198[/C][C]209524.932001189[/C][C]3673.06799881074[/C][/ROW]
[ROW][C]74[/C][C]181713[/C][C]183865.193018655[/C][C]-2152.19301865456[/C][/ROW]
[ROW][C]75[/C][C]148698[/C][C]165715.192111152[/C][C]-17017.1921111524[/C][/ROW]
[ROW][C]76[/C][C]300103[/C][C]224949.801583781[/C][C]75153.1984162187[/C][/ROW]
[ROW][C]77[/C][C]251437[/C][C]239794.273751646[/C][C]11642.7262483539[/C][/ROW]
[ROW][C]78[/C][C]197295[/C][C]200283.286921728[/C][C]-2988.28692172828[/C][/ROW]
[ROW][C]79[/C][C]158163[/C][C]166627.923339868[/C][C]-8464.92333986833[/C][/ROW]
[ROW][C]80[/C][C]155529[/C][C]160043.808917735[/C][C]-4514.80891773494[/C][/ROW]
[ROW][C]81[/C][C]132672[/C][C]151332.376586313[/C][C]-18660.3765863131[/C][/ROW]
[ROW][C]82[/C][C]377213[/C][C]292814.011817703[/C][C]84398.9881822971[/C][/ROW]
[ROW][C]83[/C][C]145905[/C][C]169244.853267544[/C][C]-23339.8532675436[/C][/ROW]
[ROW][C]84[/C][C]223701[/C][C]195837.554505744[/C][C]27863.4454942561[/C][/ROW]
[ROW][C]85[/C][C]80953[/C][C]98771.6653213231[/C][C]-17818.6653213232[/C][/ROW]
[ROW][C]86[/C][C]130805[/C][C]144663.406703757[/C][C]-13858.4067037565[/C][/ROW]
[ROW][C]87[/C][C]135082[/C][C]135952.542287914[/C][C]-870.542287913814[/C][/ROW]
[ROW][C]88[/C][C]305270[/C][C]298809.118892392[/C][C]6460.88110760812[/C][/ROW]
[ROW][C]89[/C][C]271806[/C][C]259017.776698622[/C][C]12788.2233013782[/C][/ROW]
[ROW][C]90[/C][C]150949[/C][C]219762.152211093[/C][C]-68813.152211093[/C][/ROW]
[ROW][C]91[/C][C]225805[/C][C]202785.962941599[/C][C]23019.0370584006[/C][/ROW]
[ROW][C]92[/C][C]197389[/C][C]186808.227495722[/C][C]10580.7725042775[/C][/ROW]
[ROW][C]93[/C][C]156583[/C][C]154250.598613625[/C][C]2332.40138637518[/C][/ROW]
[ROW][C]94[/C][C]232718[/C][C]233024.057598891[/C][C]-306.057598890709[/C][/ROW]
[ROW][C]95[/C][C]261601[/C][C]230240.878119377[/C][C]31360.1218806234[/C][/ROW]
[ROW][C]96[/C][C]178489[/C][C]172583.048405722[/C][C]5905.95159427778[/C][/ROW]
[ROW][C]97[/C][C]200657[/C][C]187203.165681145[/C][C]13453.8343188553[/C][/ROW]
[ROW][C]98[/C][C]259244[/C][C]257829.437100321[/C][C]1414.56289967932[/C][/ROW]
[ROW][C]99[/C][C]313075[/C][C]332953.576276773[/C][C]-19878.5762767725[/C][/ROW]
[ROW][C]100[/C][C]346933[/C][C]332618.743260831[/C][C]14314.2567391688[/C][/ROW]
[ROW][C]101[/C][C]246440[/C][C]228277.204356865[/C][C]18162.7956431355[/C][/ROW]
[ROW][C]102[/C][C]252444[/C][C]262177.906115655[/C][C]-9733.90611565451[/C][/ROW]
[ROW][C]103[/C][C]159965[/C][C]176254.742610021[/C][C]-16289.7426100207[/C][/ROW]
[ROW][C]104[/C][C]43287[/C][C]56443.4747108882[/C][C]-13156.4747108882[/C][/ROW]
[ROW][C]105[/C][C]172239[/C][C]171777.93393165[/C][C]461.066068350118[/C][/ROW]
[ROW][C]106[/C][C]185198[/C][C]216251.132680022[/C][C]-31053.1326800215[/C][/ROW]
[ROW][C]107[/C][C]227681[/C][C]251579.924764748[/C][C]-23898.9247647478[/C][/ROW]
[ROW][C]108[/C][C]260464[/C][C]251016.922339622[/C][C]9447.07766037841[/C][/ROW]
[ROW][C]109[/C][C]106288[/C][C]169101.11094962[/C][C]-62813.1109496203[/C][/ROW]
[ROW][C]110[/C][C]109632[/C][C]139267.400405251[/C][C]-29635.4004052512[/C][/ROW]
[ROW][C]111[/C][C]268905[/C][C]223560.196126108[/C][C]45344.803873892[/C][/ROW]
[ROW][C]112[/C][C]266805[/C][C]206903.983390987[/C][C]59901.0166090128[/C][/ROW]
[ROW][C]113[/C][C]23623[/C][C]21890.6190128937[/C][C]1732.38098710626[/C][/ROW]
[ROW][C]114[/C][C]152474[/C][C]176400.965575048[/C][C]-23926.965575048[/C][/ROW]
[ROW][C]115[/C][C]61857[/C][C]51217.3403295053[/C][C]10639.6596704947[/C][/ROW]
[ROW][C]116[/C][C]144889[/C][C]143013.339270407[/C][C]1875.66072959288[/C][/ROW]
[ROW][C]117[/C][C]346600[/C][C]338343.024310023[/C][C]8256.97568997666[/C][/ROW]
[ROW][C]118[/C][C]21054[/C][C]21253.1185909555[/C][C]-199.118590955496[/C][/ROW]
[ROW][C]119[/C][C]224051[/C][C]203932.793487984[/C][C]20118.2065120161[/C][/ROW]
[ROW][C]120[/C][C]31414[/C][C]38513.4169936391[/C][C]-7099.41699363909[/C][/ROW]
[ROW][C]121[/C][C]261043[/C][C]295024.173718445[/C][C]-33981.1737184451[/C][/ROW]
[ROW][C]122[/C][C]206108[/C][C]177927.730219652[/C][C]28180.2697803483[/C][/ROW]
[ROW][C]123[/C][C]154984[/C][C]113364.698263283[/C][C]41619.3017367165[/C][/ROW]
[ROW][C]124[/C][C]112933[/C][C]130898.395049068[/C][C]-17965.3950490682[/C][/ROW]
[ROW][C]125[/C][C]38214[/C][C]54653.3622904218[/C][C]-16439.3622904218[/C][/ROW]
[ROW][C]126[/C][C]158671[/C][C]153834.253233259[/C][C]4836.74676674072[/C][/ROW]
[ROW][C]127[/C][C]302148[/C][C]274774.921596228[/C][C]27373.0784037721[/C][/ROW]
[ROW][C]128[/C][C]177918[/C][C]187152.752999208[/C][C]-9234.7529992084[/C][/ROW]
[ROW][C]129[/C][C]350552[/C][C]351512.03424484[/C][C]-960.034244839599[/C][/ROW]
[ROW][C]130[/C][C]275578[/C][C]300698.483813935[/C][C]-25120.4838139349[/C][/ROW]
[ROW][C]131[/C][C]368746[/C][C]354053.168145733[/C][C]14692.8318542671[/C][/ROW]
[ROW][C]132[/C][C]172464[/C][C]171362.974707455[/C][C]1101.02529254545[/C][/ROW]
[ROW][C]133[/C][C]94381[/C][C]122008.557791065[/C][C]-27627.5577910646[/C][/ROW]
[ROW][C]134[/C][C]244295[/C][C]243871.458019134[/C][C]423.541980865535[/C][/ROW]
[ROW][C]135[/C][C]382487[/C][C]372288.038928711[/C][C]10198.9610712893[/C][/ROW]
[ROW][C]136[/C][C]114525[/C][C]92627.9169720537[/C][C]21897.0830279463[/C][/ROW]
[ROW][C]137[/C][C]345884[/C][C]340804.987966401[/C][C]5079.01203359905[/C][/ROW]
[ROW][C]138[/C][C]147989[/C][C]171583.529081205[/C][C]-23594.5290812055[/C][/ROW]
[ROW][C]139[/C][C]216638[/C][C]202472.174548447[/C][C]14165.8254515533[/C][/ROW]
[ROW][C]140[/C][C]192862[/C][C]204228.694886127[/C][C]-11366.6948861274[/C][/ROW]
[ROW][C]141[/C][C]184818[/C][C]151033.342260679[/C][C]33784.6577393211[/C][/ROW]
[ROW][C]142[/C][C]336707[/C][C]316014.478673242[/C][C]20692.5213267581[/C][/ROW]
[ROW][C]143[/C][C]215836[/C][C]214785.651250987[/C][C]1050.34874901268[/C][/ROW]
[ROW][C]144[/C][C]173260[/C][C]129449.520247125[/C][C]43810.4797528752[/C][/ROW]
[ROW][C]145[/C][C]271773[/C][C]246935.945123752[/C][C]24837.0548762482[/C][/ROW]
[ROW][C]146[/C][C]130908[/C][C]171784.194968726[/C][C]-40876.1949687259[/C][/ROW]
[ROW][C]147[/C][C]204009[/C][C]239851.731111959[/C][C]-35842.7311119593[/C][/ROW]
[ROW][C]148[/C][C]245514[/C][C]240009.418093897[/C][C]5504.5819061033[/C][/ROW]
[ROW][C]149[/C][C]1[/C][C]-5186.76981737615[/C][C]5187.76981737615[/C][/ROW]
[ROW][C]150[/C][C]14688[/C][C]12520.2924505435[/C][C]2167.70754945652[/C][/ROW]
[ROW][C]151[/C][C]98[/C][C]-4995.59913521959[/C][C]5093.59913521959[/C][/ROW]
[ROW][C]152[/C][C]455[/C][C]-4804.42845306303[/C][C]5259.42845306303[/C][/ROW]
[ROW][C]153[/C][C]0[/C][C]-5186.76981737615[/C][C]5186.76981737615[/C][/ROW]
[ROW][C]154[/C][C]0[/C][C]-5186.76981737615[/C][C]5186.76981737615[/C][/ROW]
[ROW][C]155[/C][C]195765[/C][C]182884.680172354[/C][C]12880.3198276459[/C][/ROW]
[ROW][C]156[/C][C]326038[/C][C]296292.916254452[/C][C]29745.0837455478[/C][/ROW]
[ROW][C]157[/C][C]0[/C][C]-5186.76981737615[/C][C]5186.76981737615[/C][/ROW]
[ROW][C]158[/C][C]203[/C][C]-4422.08708874991[/C][C]4625.08708874991[/C][/ROW]
[ROW][C]159[/C][C]7199[/C][C]8278.22063492988[/C][C]-1079.22063492988[/C][/ROW]
[ROW][C]160[/C][C]46660[/C][C]52110.8544895908[/C][C]-5450.85448959081[/C][/ROW]
[ROW][C]161[/C][C]17547[/C][C]10838.8579940105[/C][C]6708.14200598948[/C][/ROW]
[ROW][C]162[/C][C]107465[/C][C]77448.5241499219[/C][C]30016.4758500781[/C][/ROW]
[ROW][C]163[/C][C]969[/C][C]-4804.42845306303[/C][C]5773.42845306303[/C][/ROW]
[ROW][C]164[/C][C]173102[/C][C]133744.901425352[/C][C]39357.0985746477[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=153377&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=153377&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1252101206406.85315127545694.1468487248
2134577151871.81421139-17294.8142113896
3198520179785.70745727918734.2925427215
4189326245554.752654877-56228.7526548766
5137449128390.0699994839058.93000051714
66529577833.7200540658-12538.7200540658
7439387442642.660733768-3255.66073376783
83318629168.75458236064017.24541763937
9178368189668.60994101-11300.6099410097
10186657168622.27386994118034.7261300588
11265539257706.8694314037832.13056859741
12191088188877.3994201822210.60057981831
13138866149567.965896811-10701.9658968113
14296878247678.49189437249199.5081056283
15192648185100.1348761377547.8651238633
16333462383382.080090427-49920.0800904275
17243571221630.29086539521940.709134605
18263451249939.02760104613511.9723989539
19155679153008.1758612042670.82413879587
20227053213709.58919642113343.4108035791
21240028227523.40039654312504.5996034569
22388549287370.337880442101178.662119558
23156540150531.2337078356008.76629216484
24148421177175.056507882-28754.0565078819
25177732247493.595212801-69761.5952128013
26191441235593.389410819-44152.3894108189
27249893284338.761658767-34445.7616587672
28236812217369.14181993619442.8581800641
29142329143926.263269845-1597.26326984493
30259667289838.152581712-30171.1525817117
31231625257981.973666869-26356.9736668686
32176062186221.740681233-10159.7406812327
33286683280486.3824037716196.61759622949
348748591345.4057928805-3860.40579288054
35322865311979.8705820110885.1294179898
36247082233286.859522213795.1404778005
37346011314066.67622522331944.3237747772
38191653179653.98501947511999.0149805246
3911467393367.082499619421305.9175003806
40284224294994.235700107-10770.2357001069
41284195298837.32691893-14642.3269189295
42155363167146.475429236-11783.4754292357
43177306196517.230611572-19211.2306115716
44144571126326.10515938118244.894840619
45140319230882.485574625-90563.4855746252
46405267346779.40512817958487.5948718211
4778800109864.189914022-31064.1899140224
48201970209190.720616795-7220.7206167947
49302674339798.602076907-37124.6020769074
50164733219248.17766435-54515.1776643496
51194221213912.453162451-19691.4531624512
522418841144.7975717867-16956.7975717867
53346142310512.74775818135629.2522418194
546502966997.9665811531-1968.96658115313
55101097110474.429929452-9377.42992945231
56246088237954.2383395378133.76166046324
57273108266684.8757391966423.12426080405
58282220313312.137848945-31092.1378489454
59275505297998.247259621-22493.2472596208
60214872176832.62803327238039.3719667278
61335121339253.636270524-4132.63627052382
62267171298182.530767768-31011.5307677677
63189637225497.192690576-35860.1926905765
64229512220841.6623883578670.33761164316
65209798203967.6324911625830.36750883838
66201345178024.72328158123320.2767184193
67163833170193.730556674-6360.73055667431
68204250243279.063324863-39029.0633248632
69197813197894.670558974-81.6705589743639
70132955152072.998629763-19117.9986297631
71216092221638.647692747-5546.64769274729
727356691181.1549399555-17615.1549399555
73213198209524.9320011893673.06799881074
74181713183865.193018655-2152.19301865456
75148698165715.192111152-17017.1921111524
76300103224949.80158378175153.1984162187
77251437239794.27375164611642.7262483539
78197295200283.286921728-2988.28692172828
79158163166627.923339868-8464.92333986833
80155529160043.808917735-4514.80891773494
81132672151332.376586313-18660.3765863131
82377213292814.01181770384398.9881822971
83145905169244.853267544-23339.8532675436
84223701195837.55450574427863.4454942561
858095398771.6653213231-17818.6653213232
86130805144663.406703757-13858.4067037565
87135082135952.542287914-870.542287913814
88305270298809.1188923926460.88110760812
89271806259017.77669862212788.2233013782
90150949219762.152211093-68813.152211093
91225805202785.96294159923019.0370584006
92197389186808.22749572210580.7725042775
93156583154250.5986136252332.40138637518
94232718233024.057598891-306.057598890709
95261601230240.87811937731360.1218806234
96178489172583.0484057225905.95159427778
97200657187203.16568114513453.8343188553
98259244257829.4371003211414.56289967932
99313075332953.576276773-19878.5762767725
100346933332618.74326083114314.2567391688
101246440228277.20435686518162.7956431355
102252444262177.906115655-9733.90611565451
103159965176254.742610021-16289.7426100207
1044328756443.4747108882-13156.4747108882
105172239171777.93393165461.066068350118
106185198216251.132680022-31053.1326800215
107227681251579.924764748-23898.9247647478
108260464251016.9223396229447.07766037841
109106288169101.11094962-62813.1109496203
110109632139267.400405251-29635.4004052512
111268905223560.19612610845344.803873892
112266805206903.98339098759901.0166090128
1132362321890.61901289371732.38098710626
114152474176400.965575048-23926.965575048
1156185751217.340329505310639.6596704947
116144889143013.3392704071875.66072959288
117346600338343.0243100238256.97568997666
1182105421253.1185909555-199.118590955496
119224051203932.79348798420118.2065120161
1203141438513.4169936391-7099.41699363909
121261043295024.173718445-33981.1737184451
122206108177927.73021965228180.2697803483
123154984113364.69826328341619.3017367165
124112933130898.395049068-17965.3950490682
1253821454653.3622904218-16439.3622904218
126158671153834.2532332594836.74676674072
127302148274774.92159622827373.0784037721
128177918187152.752999208-9234.7529992084
129350552351512.03424484-960.034244839599
130275578300698.483813935-25120.4838139349
131368746354053.16814573314692.8318542671
132172464171362.9747074551101.02529254545
13394381122008.557791065-27627.5577910646
134244295243871.458019134423.541980865535
135382487372288.03892871110198.9610712893
13611452592627.916972053721897.0830279463
137345884340804.9879664015079.01203359905
138147989171583.529081205-23594.5290812055
139216638202472.17454844714165.8254515533
140192862204228.694886127-11366.6948861274
141184818151033.34226067933784.6577393211
142336707316014.47867324220692.5213267581
143215836214785.6512509871050.34874901268
144173260129449.52024712543810.4797528752
145271773246935.94512375224837.0548762482
146130908171784.194968726-40876.1949687259
147204009239851.731111959-35842.7311119593
148245514240009.4180938975504.5819061033
1491-5186.769817376155187.76981737615
1501468812520.29245054352167.70754945652
15198-4995.599135219595093.59913521959
152455-4804.428453063035259.42845306303
1530-5186.769817376155186.76981737615
1540-5186.769817376155186.76981737615
155195765182884.68017235412880.3198276459
156326038296292.91625445229745.0837455478
1570-5186.769817376155186.76981737615
158203-4422.087088749914625.08708874991
15971998278.22063492988-1079.22063492988
1604666052110.8544895908-5450.85448959081
1611754710838.85799401056708.14200598948
16210746577448.524149921930016.4758500781
163969-4804.428453063035773.42845306303
164173102133744.90142535239357.0985746477







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
110.118093665748850.2361873314976990.88190633425115
120.1852702941795520.3705405883591030.814729705820448
130.1095608226682920.2191216453365850.890439177331708
140.1123620463863120.2247240927726240.887637953613688
150.09648752439231130.1929750487846230.903512475607689
160.05876267825696680.1175253565139340.941237321743033
170.03436978039494730.06873956078989460.965630219605053
180.1642119138176960.3284238276353910.835788086182304
190.1155441767215830.2310883534431660.884455823278417
200.07892784748370450.1578556949674090.921072152516295
210.0539203713404880.1078407426809760.946079628659512
220.8623914330210670.2752171339578650.137608566978933
230.8275524043690190.3448951912619630.172447595630981
240.8368432253941680.3263135492116640.163156774605832
250.8860605044485720.2278789911028550.113939495551428
260.8753399204455180.2493201591089640.124660079554482
270.8840250606779110.2319498786441790.115974939322089
280.8533272781739660.2933454436520670.146672721826034
290.8129016307490210.3741967385019580.187098369250979
300.9714582807797340.05708343844053140.0285417192202657
310.9722255945605330.05554881087893430.0277744054394671
320.9665082245042520.06698355099149660.0334917754957483
330.9539371395778460.09212572084430760.0460628604221538
340.939733442712660.120533114574680.0602665572873401
350.9223358766177180.1553282467645640.077664123382282
360.9009917290501270.1980165418997470.0990082709498734
370.9007586766338030.1984826467323940.0992413233661969
380.8771843969216570.2456312061566870.122815603078343
390.8624745161466630.2750509677066730.137525483853336
400.8373138843527990.3253722312944030.162686115647201
410.8083993166176640.3832013667646710.191600683382336
420.7771576398810870.4456847202378260.222842360118913
430.7654824896184380.4690350207631230.234517510381561
440.7481562968064880.5036874063870240.251843703193512
450.9576378950205230.08472420995895480.0423621049794774
460.9911910911187910.01761781776241760.00880890888120878
470.9928785372813820.01424292543723550.00712146271861773
480.9900165706097630.01996685878047310.00998342939023653
490.9911303620868510.01773927582629760.00886963791314882
500.9961550736559470.007689852688105560.00384492634405278
510.995431284558080.00913743088384050.00456871544192025
520.9951609037520720.009678192495856610.00483909624792831
530.9959010546581860.00819789068362780.0040989453418139
540.9942166342506510.01156673149869870.00578336574934936
550.9923589700114460.01528205997710770.00764102998855385
560.9897445898383350.02051082032332950.0102554101616648
570.9862953423513880.02740931529722430.0137046576486122
580.9873712100958070.0252575798083870.0126287899041935
590.9849809923103360.03003801537932860.0150190076896643
600.9887011735869170.0225976528261660.011298826413083
610.9847593252435020.03048134951299660.0152406747564983
620.984534233806730.03093153238654040.0154657661932702
630.9880704667865720.02385906642685680.0119295332134284
640.9840508111622560.03189837767548750.0159491888377437
650.9790801341363990.04183973172720250.0209198658636013
660.978980323331430.04203935333714080.0210196766685704
670.9724843296462810.0550313407074390.0275156703537195
680.9788068622677210.04238627546455810.021193137732279
690.972939497018690.05412100596261970.0270605029813098
700.967312597348830.06537480530233940.0326874026511697
710.9583932111169530.08321357776609350.0416067888830468
720.9535032034909150.09299359301817080.0464967965090854
730.9412538493156140.1174923013687720.058746150684386
740.9306035366386320.1387929267227350.0693964633613676
750.9183772713329810.1632454573340380.0816227286670189
760.9851678729037580.0296642541924840.014832127096242
770.9811797351945740.0376405296108520.018820264805426
780.9752127785548310.04957444289033760.0247872214451688
790.968005703540360.06398859291927940.0319942964596397
800.9592742171252690.08145156574946160.0407257828747308
810.9544144501644050.09117109967119080.0455855498355954
820.9962892061380160.007421587723968470.00371079386198424
830.9961189048283450.007762190343310670.00388109517165534
840.9961149599115840.007770080176831630.00388504008841581
850.9951987371462120.009602525707575590.0048012628537878
860.9946223203665510.01075535926689710.00537767963344854
870.992504953560490.01499009287901970.00749504643950987
880.9897984712793850.02040305744123050.0102015287206152
890.9868358187778980.02632836244420310.0131641812221015
900.998157666721230.003684666557539580.00184233327876979
910.9978012003424850.004397599315030490.00219879965751525
920.9970275019554930.005944996089014750.00297249804450738
930.9957438159594350.008512368081130020.00425618404056501
940.994160728691170.01167854261766050.00583927130883027
950.9946929520590330.01061409588193470.00530704794096736
960.9926997477500610.01460050449987710.00730025224993853
970.9910886400984980.01782271980300450.00891135990150223
980.9879094252074860.02418114958502890.0120905747925145
990.9865188820491930.02696223590161470.0134811179508074
1000.9841804951379830.03163900972403450.0158195048620173
1010.9810216953852790.03795660922944160.0189783046147208
1020.9749817363392270.05003652732154670.0250182636607734
1030.9736496463544760.05270070729104890.0263503536455244
1040.9683873808838630.06322523823227310.0316126191161366
1050.9592088255949830.08158234881003390.0407911744050169
1060.9680215920260340.06395681594793150.0319784079739657
1070.9714132271668730.05717354566625340.0285867728331267
1080.9627553479014170.07448930419716570.0372446520985829
1090.988326077051480.0233478458970390.0116739229485195
1100.9925779300912370.01484413981752510.00742206990876255
1110.9972494669349250.00550106613015040.0027505330650752
1120.9994826609499860.00103467810002770.000517339050013848
1130.9991696858790990.001660628241801570.000830314120900784
1140.9992899346683810.001420130663237340.000710065331618672
1150.9989213081278170.002157383744366350.00107869187218318
1160.99832944310390.003341113792200230.00167055689610012
1170.9975039804341250.004992039131749390.00249601956587469
1180.9961642920209140.00767141595817140.0038357079790857
1190.994895572994310.0102088540113810.00510442700569051
1200.9933529912306340.01329401753873270.00664700876936637
1210.9955883915397390.008823216920521150.00441160846026057
1220.9957686018957810.0084627962084380.004231398104219
1230.9976971483474340.004605703305132180.00230285165256609
1240.9977089686112770.004582062777446670.00229103138872334
1250.997707172817560.004585654364879750.00229282718243987
1260.9964375050395560.007124989920887720.00356249496044386
1270.9981790402209750.003641919558049960.00182095977902498
1280.9970628878052550.005874224389490540.00293711219474527
1290.9951903828736580.009619234252683790.00480961712634189
1300.9950496729273770.00990065414524690.00495032707262345
1310.9943538016690020.01129239666199640.00564619833099818
1320.9944026784777960.01119464304440780.00559732152220392
1330.9951164105823190.00976717883536190.00488358941768095
1340.9940420663815980.01191586723680370.00595793361840183
1350.9904836393014470.01903272139710690.00951636069855346
1360.9963492904107410.007301419178518770.00365070958925939
1370.9938756864776440.01224862704471140.00612431352235569
1380.9971886567586010.005622686482798740.00281134324139937
1390.9999340354260050.0001319291479890866.5964573994543e-05
1400.9998505538817020.0002988922365960510.000149446118298026
1410.9999989692780592.06144388274228e-061.03072194137114e-06
1420.9999964790172487.04196550358213e-063.52098275179107e-06
1430.9999897738277412.045234451884e-051.022617225942e-05
1440.9999944840228381.10319543247192e-055.51597716235962e-06
1450.9999995710191318.57961737630239e-074.28980868815119e-07
1460.9999999263307781.47338444629587e-077.36692223147934e-08
1470.9999998785600772.42879846306031e-071.21439923153016e-07
1480.9999997925935594.1481288167505e-072.07406440837525e-07
1490.999998152695543.69460892083898e-061.84730446041949e-06
1500.9999997823853084.35229385066201e-072.17614692533101e-07
1510.9999964964743457.00705130927953e-063.50352565463976e-06
1520.9999434855910690.0001130288178627775.65144089313885e-05
1530.9992971635238150.001405672952370830.000702836476185417

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
11 & 0.11809366574885 & 0.236187331497699 & 0.88190633425115 \tabularnewline
12 & 0.185270294179552 & 0.370540588359103 & 0.814729705820448 \tabularnewline
13 & 0.109560822668292 & 0.219121645336585 & 0.890439177331708 \tabularnewline
14 & 0.112362046386312 & 0.224724092772624 & 0.887637953613688 \tabularnewline
15 & 0.0964875243923113 & 0.192975048784623 & 0.903512475607689 \tabularnewline
16 & 0.0587626782569668 & 0.117525356513934 & 0.941237321743033 \tabularnewline
17 & 0.0343697803949473 & 0.0687395607898946 & 0.965630219605053 \tabularnewline
18 & 0.164211913817696 & 0.328423827635391 & 0.835788086182304 \tabularnewline
19 & 0.115544176721583 & 0.231088353443166 & 0.884455823278417 \tabularnewline
20 & 0.0789278474837045 & 0.157855694967409 & 0.921072152516295 \tabularnewline
21 & 0.053920371340488 & 0.107840742680976 & 0.946079628659512 \tabularnewline
22 & 0.862391433021067 & 0.275217133957865 & 0.137608566978933 \tabularnewline
23 & 0.827552404369019 & 0.344895191261963 & 0.172447595630981 \tabularnewline
24 & 0.836843225394168 & 0.326313549211664 & 0.163156774605832 \tabularnewline
25 & 0.886060504448572 & 0.227878991102855 & 0.113939495551428 \tabularnewline
26 & 0.875339920445518 & 0.249320159108964 & 0.124660079554482 \tabularnewline
27 & 0.884025060677911 & 0.231949878644179 & 0.115974939322089 \tabularnewline
28 & 0.853327278173966 & 0.293345443652067 & 0.146672721826034 \tabularnewline
29 & 0.812901630749021 & 0.374196738501958 & 0.187098369250979 \tabularnewline
30 & 0.971458280779734 & 0.0570834384405314 & 0.0285417192202657 \tabularnewline
31 & 0.972225594560533 & 0.0555488108789343 & 0.0277744054394671 \tabularnewline
32 & 0.966508224504252 & 0.0669835509914966 & 0.0334917754957483 \tabularnewline
33 & 0.953937139577846 & 0.0921257208443076 & 0.0460628604221538 \tabularnewline
34 & 0.93973344271266 & 0.12053311457468 & 0.0602665572873401 \tabularnewline
35 & 0.922335876617718 & 0.155328246764564 & 0.077664123382282 \tabularnewline
36 & 0.900991729050127 & 0.198016541899747 & 0.0990082709498734 \tabularnewline
37 & 0.900758676633803 & 0.198482646732394 & 0.0992413233661969 \tabularnewline
38 & 0.877184396921657 & 0.245631206156687 & 0.122815603078343 \tabularnewline
39 & 0.862474516146663 & 0.275050967706673 & 0.137525483853336 \tabularnewline
40 & 0.837313884352799 & 0.325372231294403 & 0.162686115647201 \tabularnewline
41 & 0.808399316617664 & 0.383201366764671 & 0.191600683382336 \tabularnewline
42 & 0.777157639881087 & 0.445684720237826 & 0.222842360118913 \tabularnewline
43 & 0.765482489618438 & 0.469035020763123 & 0.234517510381561 \tabularnewline
44 & 0.748156296806488 & 0.503687406387024 & 0.251843703193512 \tabularnewline
45 & 0.957637895020523 & 0.0847242099589548 & 0.0423621049794774 \tabularnewline
46 & 0.991191091118791 & 0.0176178177624176 & 0.00880890888120878 \tabularnewline
47 & 0.992878537281382 & 0.0142429254372355 & 0.00712146271861773 \tabularnewline
48 & 0.990016570609763 & 0.0199668587804731 & 0.00998342939023653 \tabularnewline
49 & 0.991130362086851 & 0.0177392758262976 & 0.00886963791314882 \tabularnewline
50 & 0.996155073655947 & 0.00768985268810556 & 0.00384492634405278 \tabularnewline
51 & 0.99543128455808 & 0.0091374308838405 & 0.00456871544192025 \tabularnewline
52 & 0.995160903752072 & 0.00967819249585661 & 0.00483909624792831 \tabularnewline
53 & 0.995901054658186 & 0.0081978906836278 & 0.0040989453418139 \tabularnewline
54 & 0.994216634250651 & 0.0115667314986987 & 0.00578336574934936 \tabularnewline
55 & 0.992358970011446 & 0.0152820599771077 & 0.00764102998855385 \tabularnewline
56 & 0.989744589838335 & 0.0205108203233295 & 0.0102554101616648 \tabularnewline
57 & 0.986295342351388 & 0.0274093152972243 & 0.0137046576486122 \tabularnewline
58 & 0.987371210095807 & 0.025257579808387 & 0.0126287899041935 \tabularnewline
59 & 0.984980992310336 & 0.0300380153793286 & 0.0150190076896643 \tabularnewline
60 & 0.988701173586917 & 0.022597652826166 & 0.011298826413083 \tabularnewline
61 & 0.984759325243502 & 0.0304813495129966 & 0.0152406747564983 \tabularnewline
62 & 0.98453423380673 & 0.0309315323865404 & 0.0154657661932702 \tabularnewline
63 & 0.988070466786572 & 0.0238590664268568 & 0.0119295332134284 \tabularnewline
64 & 0.984050811162256 & 0.0318983776754875 & 0.0159491888377437 \tabularnewline
65 & 0.979080134136399 & 0.0418397317272025 & 0.0209198658636013 \tabularnewline
66 & 0.97898032333143 & 0.0420393533371408 & 0.0210196766685704 \tabularnewline
67 & 0.972484329646281 & 0.055031340707439 & 0.0275156703537195 \tabularnewline
68 & 0.978806862267721 & 0.0423862754645581 & 0.021193137732279 \tabularnewline
69 & 0.97293949701869 & 0.0541210059626197 & 0.0270605029813098 \tabularnewline
70 & 0.96731259734883 & 0.0653748053023394 & 0.0326874026511697 \tabularnewline
71 & 0.958393211116953 & 0.0832135777660935 & 0.0416067888830468 \tabularnewline
72 & 0.953503203490915 & 0.0929935930181708 & 0.0464967965090854 \tabularnewline
73 & 0.941253849315614 & 0.117492301368772 & 0.058746150684386 \tabularnewline
74 & 0.930603536638632 & 0.138792926722735 & 0.0693964633613676 \tabularnewline
75 & 0.918377271332981 & 0.163245457334038 & 0.0816227286670189 \tabularnewline
76 & 0.985167872903758 & 0.029664254192484 & 0.014832127096242 \tabularnewline
77 & 0.981179735194574 & 0.037640529610852 & 0.018820264805426 \tabularnewline
78 & 0.975212778554831 & 0.0495744428903376 & 0.0247872214451688 \tabularnewline
79 & 0.96800570354036 & 0.0639885929192794 & 0.0319942964596397 \tabularnewline
80 & 0.959274217125269 & 0.0814515657494616 & 0.0407257828747308 \tabularnewline
81 & 0.954414450164405 & 0.0911710996711908 & 0.0455855498355954 \tabularnewline
82 & 0.996289206138016 & 0.00742158772396847 & 0.00371079386198424 \tabularnewline
83 & 0.996118904828345 & 0.00776219034331067 & 0.00388109517165534 \tabularnewline
84 & 0.996114959911584 & 0.00777008017683163 & 0.00388504008841581 \tabularnewline
85 & 0.995198737146212 & 0.00960252570757559 & 0.0048012628537878 \tabularnewline
86 & 0.994622320366551 & 0.0107553592668971 & 0.00537767963344854 \tabularnewline
87 & 0.99250495356049 & 0.0149900928790197 & 0.00749504643950987 \tabularnewline
88 & 0.989798471279385 & 0.0204030574412305 & 0.0102015287206152 \tabularnewline
89 & 0.986835818777898 & 0.0263283624442031 & 0.0131641812221015 \tabularnewline
90 & 0.99815766672123 & 0.00368466655753958 & 0.00184233327876979 \tabularnewline
91 & 0.997801200342485 & 0.00439759931503049 & 0.00219879965751525 \tabularnewline
92 & 0.997027501955493 & 0.00594499608901475 & 0.00297249804450738 \tabularnewline
93 & 0.995743815959435 & 0.00851236808113002 & 0.00425618404056501 \tabularnewline
94 & 0.99416072869117 & 0.0116785426176605 & 0.00583927130883027 \tabularnewline
95 & 0.994692952059033 & 0.0106140958819347 & 0.00530704794096736 \tabularnewline
96 & 0.992699747750061 & 0.0146005044998771 & 0.00730025224993853 \tabularnewline
97 & 0.991088640098498 & 0.0178227198030045 & 0.00891135990150223 \tabularnewline
98 & 0.987909425207486 & 0.0241811495850289 & 0.0120905747925145 \tabularnewline
99 & 0.986518882049193 & 0.0269622359016147 & 0.0134811179508074 \tabularnewline
100 & 0.984180495137983 & 0.0316390097240345 & 0.0158195048620173 \tabularnewline
101 & 0.981021695385279 & 0.0379566092294416 & 0.0189783046147208 \tabularnewline
102 & 0.974981736339227 & 0.0500365273215467 & 0.0250182636607734 \tabularnewline
103 & 0.973649646354476 & 0.0527007072910489 & 0.0263503536455244 \tabularnewline
104 & 0.968387380883863 & 0.0632252382322731 & 0.0316126191161366 \tabularnewline
105 & 0.959208825594983 & 0.0815823488100339 & 0.0407911744050169 \tabularnewline
106 & 0.968021592026034 & 0.0639568159479315 & 0.0319784079739657 \tabularnewline
107 & 0.971413227166873 & 0.0571735456662534 & 0.0285867728331267 \tabularnewline
108 & 0.962755347901417 & 0.0744893041971657 & 0.0372446520985829 \tabularnewline
109 & 0.98832607705148 & 0.023347845897039 & 0.0116739229485195 \tabularnewline
110 & 0.992577930091237 & 0.0148441398175251 & 0.00742206990876255 \tabularnewline
111 & 0.997249466934925 & 0.0055010661301504 & 0.0027505330650752 \tabularnewline
112 & 0.999482660949986 & 0.0010346781000277 & 0.000517339050013848 \tabularnewline
113 & 0.999169685879099 & 0.00166062824180157 & 0.000830314120900784 \tabularnewline
114 & 0.999289934668381 & 0.00142013066323734 & 0.000710065331618672 \tabularnewline
115 & 0.998921308127817 & 0.00215738374436635 & 0.00107869187218318 \tabularnewline
116 & 0.9983294431039 & 0.00334111379220023 & 0.00167055689610012 \tabularnewline
117 & 0.997503980434125 & 0.00499203913174939 & 0.00249601956587469 \tabularnewline
118 & 0.996164292020914 & 0.0076714159581714 & 0.0038357079790857 \tabularnewline
119 & 0.99489557299431 & 0.010208854011381 & 0.00510442700569051 \tabularnewline
120 & 0.993352991230634 & 0.0132940175387327 & 0.00664700876936637 \tabularnewline
121 & 0.995588391539739 & 0.00882321692052115 & 0.00441160846026057 \tabularnewline
122 & 0.995768601895781 & 0.008462796208438 & 0.004231398104219 \tabularnewline
123 & 0.997697148347434 & 0.00460570330513218 & 0.00230285165256609 \tabularnewline
124 & 0.997708968611277 & 0.00458206277744667 & 0.00229103138872334 \tabularnewline
125 & 0.99770717281756 & 0.00458565436487975 & 0.00229282718243987 \tabularnewline
126 & 0.996437505039556 & 0.00712498992088772 & 0.00356249496044386 \tabularnewline
127 & 0.998179040220975 & 0.00364191955804996 & 0.00182095977902498 \tabularnewline
128 & 0.997062887805255 & 0.00587422438949054 & 0.00293711219474527 \tabularnewline
129 & 0.995190382873658 & 0.00961923425268379 & 0.00480961712634189 \tabularnewline
130 & 0.995049672927377 & 0.0099006541452469 & 0.00495032707262345 \tabularnewline
131 & 0.994353801669002 & 0.0112923966619964 & 0.00564619833099818 \tabularnewline
132 & 0.994402678477796 & 0.0111946430444078 & 0.00559732152220392 \tabularnewline
133 & 0.995116410582319 & 0.0097671788353619 & 0.00488358941768095 \tabularnewline
134 & 0.994042066381598 & 0.0119158672368037 & 0.00595793361840183 \tabularnewline
135 & 0.990483639301447 & 0.0190327213971069 & 0.00951636069855346 \tabularnewline
136 & 0.996349290410741 & 0.00730141917851877 & 0.00365070958925939 \tabularnewline
137 & 0.993875686477644 & 0.0122486270447114 & 0.00612431352235569 \tabularnewline
138 & 0.997188656758601 & 0.00562268648279874 & 0.00281134324139937 \tabularnewline
139 & 0.999934035426005 & 0.000131929147989086 & 6.5964573994543e-05 \tabularnewline
140 & 0.999850553881702 & 0.000298892236596051 & 0.000149446118298026 \tabularnewline
141 & 0.999998969278059 & 2.06144388274228e-06 & 1.03072194137114e-06 \tabularnewline
142 & 0.999996479017248 & 7.04196550358213e-06 & 3.52098275179107e-06 \tabularnewline
143 & 0.999989773827741 & 2.045234451884e-05 & 1.022617225942e-05 \tabularnewline
144 & 0.999994484022838 & 1.10319543247192e-05 & 5.51597716235962e-06 \tabularnewline
145 & 0.999999571019131 & 8.57961737630239e-07 & 4.28980868815119e-07 \tabularnewline
146 & 0.999999926330778 & 1.47338444629587e-07 & 7.36692223147934e-08 \tabularnewline
147 & 0.999999878560077 & 2.42879846306031e-07 & 1.21439923153016e-07 \tabularnewline
148 & 0.999999792593559 & 4.1481288167505e-07 & 2.07406440837525e-07 \tabularnewline
149 & 0.99999815269554 & 3.69460892083898e-06 & 1.84730446041949e-06 \tabularnewline
150 & 0.999999782385308 & 4.35229385066201e-07 & 2.17614692533101e-07 \tabularnewline
151 & 0.999996496474345 & 7.00705130927953e-06 & 3.50352565463976e-06 \tabularnewline
152 & 0.999943485591069 & 0.000113028817862777 & 5.65144089313885e-05 \tabularnewline
153 & 0.999297163523815 & 0.00140567295237083 & 0.000702836476185417 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=153377&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]11[/C][C]0.11809366574885[/C][C]0.236187331497699[/C][C]0.88190633425115[/C][/ROW]
[ROW][C]12[/C][C]0.185270294179552[/C][C]0.370540588359103[/C][C]0.814729705820448[/C][/ROW]
[ROW][C]13[/C][C]0.109560822668292[/C][C]0.219121645336585[/C][C]0.890439177331708[/C][/ROW]
[ROW][C]14[/C][C]0.112362046386312[/C][C]0.224724092772624[/C][C]0.887637953613688[/C][/ROW]
[ROW][C]15[/C][C]0.0964875243923113[/C][C]0.192975048784623[/C][C]0.903512475607689[/C][/ROW]
[ROW][C]16[/C][C]0.0587626782569668[/C][C]0.117525356513934[/C][C]0.941237321743033[/C][/ROW]
[ROW][C]17[/C][C]0.0343697803949473[/C][C]0.0687395607898946[/C][C]0.965630219605053[/C][/ROW]
[ROW][C]18[/C][C]0.164211913817696[/C][C]0.328423827635391[/C][C]0.835788086182304[/C][/ROW]
[ROW][C]19[/C][C]0.115544176721583[/C][C]0.231088353443166[/C][C]0.884455823278417[/C][/ROW]
[ROW][C]20[/C][C]0.0789278474837045[/C][C]0.157855694967409[/C][C]0.921072152516295[/C][/ROW]
[ROW][C]21[/C][C]0.053920371340488[/C][C]0.107840742680976[/C][C]0.946079628659512[/C][/ROW]
[ROW][C]22[/C][C]0.862391433021067[/C][C]0.275217133957865[/C][C]0.137608566978933[/C][/ROW]
[ROW][C]23[/C][C]0.827552404369019[/C][C]0.344895191261963[/C][C]0.172447595630981[/C][/ROW]
[ROW][C]24[/C][C]0.836843225394168[/C][C]0.326313549211664[/C][C]0.163156774605832[/C][/ROW]
[ROW][C]25[/C][C]0.886060504448572[/C][C]0.227878991102855[/C][C]0.113939495551428[/C][/ROW]
[ROW][C]26[/C][C]0.875339920445518[/C][C]0.249320159108964[/C][C]0.124660079554482[/C][/ROW]
[ROW][C]27[/C][C]0.884025060677911[/C][C]0.231949878644179[/C][C]0.115974939322089[/C][/ROW]
[ROW][C]28[/C][C]0.853327278173966[/C][C]0.293345443652067[/C][C]0.146672721826034[/C][/ROW]
[ROW][C]29[/C][C]0.812901630749021[/C][C]0.374196738501958[/C][C]0.187098369250979[/C][/ROW]
[ROW][C]30[/C][C]0.971458280779734[/C][C]0.0570834384405314[/C][C]0.0285417192202657[/C][/ROW]
[ROW][C]31[/C][C]0.972225594560533[/C][C]0.0555488108789343[/C][C]0.0277744054394671[/C][/ROW]
[ROW][C]32[/C][C]0.966508224504252[/C][C]0.0669835509914966[/C][C]0.0334917754957483[/C][/ROW]
[ROW][C]33[/C][C]0.953937139577846[/C][C]0.0921257208443076[/C][C]0.0460628604221538[/C][/ROW]
[ROW][C]34[/C][C]0.93973344271266[/C][C]0.12053311457468[/C][C]0.0602665572873401[/C][/ROW]
[ROW][C]35[/C][C]0.922335876617718[/C][C]0.155328246764564[/C][C]0.077664123382282[/C][/ROW]
[ROW][C]36[/C][C]0.900991729050127[/C][C]0.198016541899747[/C][C]0.0990082709498734[/C][/ROW]
[ROW][C]37[/C][C]0.900758676633803[/C][C]0.198482646732394[/C][C]0.0992413233661969[/C][/ROW]
[ROW][C]38[/C][C]0.877184396921657[/C][C]0.245631206156687[/C][C]0.122815603078343[/C][/ROW]
[ROW][C]39[/C][C]0.862474516146663[/C][C]0.275050967706673[/C][C]0.137525483853336[/C][/ROW]
[ROW][C]40[/C][C]0.837313884352799[/C][C]0.325372231294403[/C][C]0.162686115647201[/C][/ROW]
[ROW][C]41[/C][C]0.808399316617664[/C][C]0.383201366764671[/C][C]0.191600683382336[/C][/ROW]
[ROW][C]42[/C][C]0.777157639881087[/C][C]0.445684720237826[/C][C]0.222842360118913[/C][/ROW]
[ROW][C]43[/C][C]0.765482489618438[/C][C]0.469035020763123[/C][C]0.234517510381561[/C][/ROW]
[ROW][C]44[/C][C]0.748156296806488[/C][C]0.503687406387024[/C][C]0.251843703193512[/C][/ROW]
[ROW][C]45[/C][C]0.957637895020523[/C][C]0.0847242099589548[/C][C]0.0423621049794774[/C][/ROW]
[ROW][C]46[/C][C]0.991191091118791[/C][C]0.0176178177624176[/C][C]0.00880890888120878[/C][/ROW]
[ROW][C]47[/C][C]0.992878537281382[/C][C]0.0142429254372355[/C][C]0.00712146271861773[/C][/ROW]
[ROW][C]48[/C][C]0.990016570609763[/C][C]0.0199668587804731[/C][C]0.00998342939023653[/C][/ROW]
[ROW][C]49[/C][C]0.991130362086851[/C][C]0.0177392758262976[/C][C]0.00886963791314882[/C][/ROW]
[ROW][C]50[/C][C]0.996155073655947[/C][C]0.00768985268810556[/C][C]0.00384492634405278[/C][/ROW]
[ROW][C]51[/C][C]0.99543128455808[/C][C]0.0091374308838405[/C][C]0.00456871544192025[/C][/ROW]
[ROW][C]52[/C][C]0.995160903752072[/C][C]0.00967819249585661[/C][C]0.00483909624792831[/C][/ROW]
[ROW][C]53[/C][C]0.995901054658186[/C][C]0.0081978906836278[/C][C]0.0040989453418139[/C][/ROW]
[ROW][C]54[/C][C]0.994216634250651[/C][C]0.0115667314986987[/C][C]0.00578336574934936[/C][/ROW]
[ROW][C]55[/C][C]0.992358970011446[/C][C]0.0152820599771077[/C][C]0.00764102998855385[/C][/ROW]
[ROW][C]56[/C][C]0.989744589838335[/C][C]0.0205108203233295[/C][C]0.0102554101616648[/C][/ROW]
[ROW][C]57[/C][C]0.986295342351388[/C][C]0.0274093152972243[/C][C]0.0137046576486122[/C][/ROW]
[ROW][C]58[/C][C]0.987371210095807[/C][C]0.025257579808387[/C][C]0.0126287899041935[/C][/ROW]
[ROW][C]59[/C][C]0.984980992310336[/C][C]0.0300380153793286[/C][C]0.0150190076896643[/C][/ROW]
[ROW][C]60[/C][C]0.988701173586917[/C][C]0.022597652826166[/C][C]0.011298826413083[/C][/ROW]
[ROW][C]61[/C][C]0.984759325243502[/C][C]0.0304813495129966[/C][C]0.0152406747564983[/C][/ROW]
[ROW][C]62[/C][C]0.98453423380673[/C][C]0.0309315323865404[/C][C]0.0154657661932702[/C][/ROW]
[ROW][C]63[/C][C]0.988070466786572[/C][C]0.0238590664268568[/C][C]0.0119295332134284[/C][/ROW]
[ROW][C]64[/C][C]0.984050811162256[/C][C]0.0318983776754875[/C][C]0.0159491888377437[/C][/ROW]
[ROW][C]65[/C][C]0.979080134136399[/C][C]0.0418397317272025[/C][C]0.0209198658636013[/C][/ROW]
[ROW][C]66[/C][C]0.97898032333143[/C][C]0.0420393533371408[/C][C]0.0210196766685704[/C][/ROW]
[ROW][C]67[/C][C]0.972484329646281[/C][C]0.055031340707439[/C][C]0.0275156703537195[/C][/ROW]
[ROW][C]68[/C][C]0.978806862267721[/C][C]0.0423862754645581[/C][C]0.021193137732279[/C][/ROW]
[ROW][C]69[/C][C]0.97293949701869[/C][C]0.0541210059626197[/C][C]0.0270605029813098[/C][/ROW]
[ROW][C]70[/C][C]0.96731259734883[/C][C]0.0653748053023394[/C][C]0.0326874026511697[/C][/ROW]
[ROW][C]71[/C][C]0.958393211116953[/C][C]0.0832135777660935[/C][C]0.0416067888830468[/C][/ROW]
[ROW][C]72[/C][C]0.953503203490915[/C][C]0.0929935930181708[/C][C]0.0464967965090854[/C][/ROW]
[ROW][C]73[/C][C]0.941253849315614[/C][C]0.117492301368772[/C][C]0.058746150684386[/C][/ROW]
[ROW][C]74[/C][C]0.930603536638632[/C][C]0.138792926722735[/C][C]0.0693964633613676[/C][/ROW]
[ROW][C]75[/C][C]0.918377271332981[/C][C]0.163245457334038[/C][C]0.0816227286670189[/C][/ROW]
[ROW][C]76[/C][C]0.985167872903758[/C][C]0.029664254192484[/C][C]0.014832127096242[/C][/ROW]
[ROW][C]77[/C][C]0.981179735194574[/C][C]0.037640529610852[/C][C]0.018820264805426[/C][/ROW]
[ROW][C]78[/C][C]0.975212778554831[/C][C]0.0495744428903376[/C][C]0.0247872214451688[/C][/ROW]
[ROW][C]79[/C][C]0.96800570354036[/C][C]0.0639885929192794[/C][C]0.0319942964596397[/C][/ROW]
[ROW][C]80[/C][C]0.959274217125269[/C][C]0.0814515657494616[/C][C]0.0407257828747308[/C][/ROW]
[ROW][C]81[/C][C]0.954414450164405[/C][C]0.0911710996711908[/C][C]0.0455855498355954[/C][/ROW]
[ROW][C]82[/C][C]0.996289206138016[/C][C]0.00742158772396847[/C][C]0.00371079386198424[/C][/ROW]
[ROW][C]83[/C][C]0.996118904828345[/C][C]0.00776219034331067[/C][C]0.00388109517165534[/C][/ROW]
[ROW][C]84[/C][C]0.996114959911584[/C][C]0.00777008017683163[/C][C]0.00388504008841581[/C][/ROW]
[ROW][C]85[/C][C]0.995198737146212[/C][C]0.00960252570757559[/C][C]0.0048012628537878[/C][/ROW]
[ROW][C]86[/C][C]0.994622320366551[/C][C]0.0107553592668971[/C][C]0.00537767963344854[/C][/ROW]
[ROW][C]87[/C][C]0.99250495356049[/C][C]0.0149900928790197[/C][C]0.00749504643950987[/C][/ROW]
[ROW][C]88[/C][C]0.989798471279385[/C][C]0.0204030574412305[/C][C]0.0102015287206152[/C][/ROW]
[ROW][C]89[/C][C]0.986835818777898[/C][C]0.0263283624442031[/C][C]0.0131641812221015[/C][/ROW]
[ROW][C]90[/C][C]0.99815766672123[/C][C]0.00368466655753958[/C][C]0.00184233327876979[/C][/ROW]
[ROW][C]91[/C][C]0.997801200342485[/C][C]0.00439759931503049[/C][C]0.00219879965751525[/C][/ROW]
[ROW][C]92[/C][C]0.997027501955493[/C][C]0.00594499608901475[/C][C]0.00297249804450738[/C][/ROW]
[ROW][C]93[/C][C]0.995743815959435[/C][C]0.00851236808113002[/C][C]0.00425618404056501[/C][/ROW]
[ROW][C]94[/C][C]0.99416072869117[/C][C]0.0116785426176605[/C][C]0.00583927130883027[/C][/ROW]
[ROW][C]95[/C][C]0.994692952059033[/C][C]0.0106140958819347[/C][C]0.00530704794096736[/C][/ROW]
[ROW][C]96[/C][C]0.992699747750061[/C][C]0.0146005044998771[/C][C]0.00730025224993853[/C][/ROW]
[ROW][C]97[/C][C]0.991088640098498[/C][C]0.0178227198030045[/C][C]0.00891135990150223[/C][/ROW]
[ROW][C]98[/C][C]0.987909425207486[/C][C]0.0241811495850289[/C][C]0.0120905747925145[/C][/ROW]
[ROW][C]99[/C][C]0.986518882049193[/C][C]0.0269622359016147[/C][C]0.0134811179508074[/C][/ROW]
[ROW][C]100[/C][C]0.984180495137983[/C][C]0.0316390097240345[/C][C]0.0158195048620173[/C][/ROW]
[ROW][C]101[/C][C]0.981021695385279[/C][C]0.0379566092294416[/C][C]0.0189783046147208[/C][/ROW]
[ROW][C]102[/C][C]0.974981736339227[/C][C]0.0500365273215467[/C][C]0.0250182636607734[/C][/ROW]
[ROW][C]103[/C][C]0.973649646354476[/C][C]0.0527007072910489[/C][C]0.0263503536455244[/C][/ROW]
[ROW][C]104[/C][C]0.968387380883863[/C][C]0.0632252382322731[/C][C]0.0316126191161366[/C][/ROW]
[ROW][C]105[/C][C]0.959208825594983[/C][C]0.0815823488100339[/C][C]0.0407911744050169[/C][/ROW]
[ROW][C]106[/C][C]0.968021592026034[/C][C]0.0639568159479315[/C][C]0.0319784079739657[/C][/ROW]
[ROW][C]107[/C][C]0.971413227166873[/C][C]0.0571735456662534[/C][C]0.0285867728331267[/C][/ROW]
[ROW][C]108[/C][C]0.962755347901417[/C][C]0.0744893041971657[/C][C]0.0372446520985829[/C][/ROW]
[ROW][C]109[/C][C]0.98832607705148[/C][C]0.023347845897039[/C][C]0.0116739229485195[/C][/ROW]
[ROW][C]110[/C][C]0.992577930091237[/C][C]0.0148441398175251[/C][C]0.00742206990876255[/C][/ROW]
[ROW][C]111[/C][C]0.997249466934925[/C][C]0.0055010661301504[/C][C]0.0027505330650752[/C][/ROW]
[ROW][C]112[/C][C]0.999482660949986[/C][C]0.0010346781000277[/C][C]0.000517339050013848[/C][/ROW]
[ROW][C]113[/C][C]0.999169685879099[/C][C]0.00166062824180157[/C][C]0.000830314120900784[/C][/ROW]
[ROW][C]114[/C][C]0.999289934668381[/C][C]0.00142013066323734[/C][C]0.000710065331618672[/C][/ROW]
[ROW][C]115[/C][C]0.998921308127817[/C][C]0.00215738374436635[/C][C]0.00107869187218318[/C][/ROW]
[ROW][C]116[/C][C]0.9983294431039[/C][C]0.00334111379220023[/C][C]0.00167055689610012[/C][/ROW]
[ROW][C]117[/C][C]0.997503980434125[/C][C]0.00499203913174939[/C][C]0.00249601956587469[/C][/ROW]
[ROW][C]118[/C][C]0.996164292020914[/C][C]0.0076714159581714[/C][C]0.0038357079790857[/C][/ROW]
[ROW][C]119[/C][C]0.99489557299431[/C][C]0.010208854011381[/C][C]0.00510442700569051[/C][/ROW]
[ROW][C]120[/C][C]0.993352991230634[/C][C]0.0132940175387327[/C][C]0.00664700876936637[/C][/ROW]
[ROW][C]121[/C][C]0.995588391539739[/C][C]0.00882321692052115[/C][C]0.00441160846026057[/C][/ROW]
[ROW][C]122[/C][C]0.995768601895781[/C][C]0.008462796208438[/C][C]0.004231398104219[/C][/ROW]
[ROW][C]123[/C][C]0.997697148347434[/C][C]0.00460570330513218[/C][C]0.00230285165256609[/C][/ROW]
[ROW][C]124[/C][C]0.997708968611277[/C][C]0.00458206277744667[/C][C]0.00229103138872334[/C][/ROW]
[ROW][C]125[/C][C]0.99770717281756[/C][C]0.00458565436487975[/C][C]0.00229282718243987[/C][/ROW]
[ROW][C]126[/C][C]0.996437505039556[/C][C]0.00712498992088772[/C][C]0.00356249496044386[/C][/ROW]
[ROW][C]127[/C][C]0.998179040220975[/C][C]0.00364191955804996[/C][C]0.00182095977902498[/C][/ROW]
[ROW][C]128[/C][C]0.997062887805255[/C][C]0.00587422438949054[/C][C]0.00293711219474527[/C][/ROW]
[ROW][C]129[/C][C]0.995190382873658[/C][C]0.00961923425268379[/C][C]0.00480961712634189[/C][/ROW]
[ROW][C]130[/C][C]0.995049672927377[/C][C]0.0099006541452469[/C][C]0.00495032707262345[/C][/ROW]
[ROW][C]131[/C][C]0.994353801669002[/C][C]0.0112923966619964[/C][C]0.00564619833099818[/C][/ROW]
[ROW][C]132[/C][C]0.994402678477796[/C][C]0.0111946430444078[/C][C]0.00559732152220392[/C][/ROW]
[ROW][C]133[/C][C]0.995116410582319[/C][C]0.0097671788353619[/C][C]0.00488358941768095[/C][/ROW]
[ROW][C]134[/C][C]0.994042066381598[/C][C]0.0119158672368037[/C][C]0.00595793361840183[/C][/ROW]
[ROW][C]135[/C][C]0.990483639301447[/C][C]0.0190327213971069[/C][C]0.00951636069855346[/C][/ROW]
[ROW][C]136[/C][C]0.996349290410741[/C][C]0.00730141917851877[/C][C]0.00365070958925939[/C][/ROW]
[ROW][C]137[/C][C]0.993875686477644[/C][C]0.0122486270447114[/C][C]0.00612431352235569[/C][/ROW]
[ROW][C]138[/C][C]0.997188656758601[/C][C]0.00562268648279874[/C][C]0.00281134324139937[/C][/ROW]
[ROW][C]139[/C][C]0.999934035426005[/C][C]0.000131929147989086[/C][C]6.5964573994543e-05[/C][/ROW]
[ROW][C]140[/C][C]0.999850553881702[/C][C]0.000298892236596051[/C][C]0.000149446118298026[/C][/ROW]
[ROW][C]141[/C][C]0.999998969278059[/C][C]2.06144388274228e-06[/C][C]1.03072194137114e-06[/C][/ROW]
[ROW][C]142[/C][C]0.999996479017248[/C][C]7.04196550358213e-06[/C][C]3.52098275179107e-06[/C][/ROW]
[ROW][C]143[/C][C]0.999989773827741[/C][C]2.045234451884e-05[/C][C]1.022617225942e-05[/C][/ROW]
[ROW][C]144[/C][C]0.999994484022838[/C][C]1.10319543247192e-05[/C][C]5.51597716235962e-06[/C][/ROW]
[ROW][C]145[/C][C]0.999999571019131[/C][C]8.57961737630239e-07[/C][C]4.28980868815119e-07[/C][/ROW]
[ROW][C]146[/C][C]0.999999926330778[/C][C]1.47338444629587e-07[/C][C]7.36692223147934e-08[/C][/ROW]
[ROW][C]147[/C][C]0.999999878560077[/C][C]2.42879846306031e-07[/C][C]1.21439923153016e-07[/C][/ROW]
[ROW][C]148[/C][C]0.999999792593559[/C][C]4.1481288167505e-07[/C][C]2.07406440837525e-07[/C][/ROW]
[ROW][C]149[/C][C]0.99999815269554[/C][C]3.69460892083898e-06[/C][C]1.84730446041949e-06[/C][/ROW]
[ROW][C]150[/C][C]0.999999782385308[/C][C]4.35229385066201e-07[/C][C]2.17614692533101e-07[/C][/ROW]
[ROW][C]151[/C][C]0.999996496474345[/C][C]7.00705130927953e-06[/C][C]3.50352565463976e-06[/C][/ROW]
[ROW][C]152[/C][C]0.999943485591069[/C][C]0.000113028817862777[/C][C]5.65144089313885e-05[/C][/ROW]
[ROW][C]153[/C][C]0.999297163523815[/C][C]0.00140567295237083[/C][C]0.000702836476185417[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=153377&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=153377&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
110.118093665748850.2361873314976990.88190633425115
120.1852702941795520.3705405883591030.814729705820448
130.1095608226682920.2191216453365850.890439177331708
140.1123620463863120.2247240927726240.887637953613688
150.09648752439231130.1929750487846230.903512475607689
160.05876267825696680.1175253565139340.941237321743033
170.03436978039494730.06873956078989460.965630219605053
180.1642119138176960.3284238276353910.835788086182304
190.1155441767215830.2310883534431660.884455823278417
200.07892784748370450.1578556949674090.921072152516295
210.0539203713404880.1078407426809760.946079628659512
220.8623914330210670.2752171339578650.137608566978933
230.8275524043690190.3448951912619630.172447595630981
240.8368432253941680.3263135492116640.163156774605832
250.8860605044485720.2278789911028550.113939495551428
260.8753399204455180.2493201591089640.124660079554482
270.8840250606779110.2319498786441790.115974939322089
280.8533272781739660.2933454436520670.146672721826034
290.8129016307490210.3741967385019580.187098369250979
300.9714582807797340.05708343844053140.0285417192202657
310.9722255945605330.05554881087893430.0277744054394671
320.9665082245042520.06698355099149660.0334917754957483
330.9539371395778460.09212572084430760.0460628604221538
340.939733442712660.120533114574680.0602665572873401
350.9223358766177180.1553282467645640.077664123382282
360.9009917290501270.1980165418997470.0990082709498734
370.9007586766338030.1984826467323940.0992413233661969
380.8771843969216570.2456312061566870.122815603078343
390.8624745161466630.2750509677066730.137525483853336
400.8373138843527990.3253722312944030.162686115647201
410.8083993166176640.3832013667646710.191600683382336
420.7771576398810870.4456847202378260.222842360118913
430.7654824896184380.4690350207631230.234517510381561
440.7481562968064880.5036874063870240.251843703193512
450.9576378950205230.08472420995895480.0423621049794774
460.9911910911187910.01761781776241760.00880890888120878
470.9928785372813820.01424292543723550.00712146271861773
480.9900165706097630.01996685878047310.00998342939023653
490.9911303620868510.01773927582629760.00886963791314882
500.9961550736559470.007689852688105560.00384492634405278
510.995431284558080.00913743088384050.00456871544192025
520.9951609037520720.009678192495856610.00483909624792831
530.9959010546581860.00819789068362780.0040989453418139
540.9942166342506510.01156673149869870.00578336574934936
550.9923589700114460.01528205997710770.00764102998855385
560.9897445898383350.02051082032332950.0102554101616648
570.9862953423513880.02740931529722430.0137046576486122
580.9873712100958070.0252575798083870.0126287899041935
590.9849809923103360.03003801537932860.0150190076896643
600.9887011735869170.0225976528261660.011298826413083
610.9847593252435020.03048134951299660.0152406747564983
620.984534233806730.03093153238654040.0154657661932702
630.9880704667865720.02385906642685680.0119295332134284
640.9840508111622560.03189837767548750.0159491888377437
650.9790801341363990.04183973172720250.0209198658636013
660.978980323331430.04203935333714080.0210196766685704
670.9724843296462810.0550313407074390.0275156703537195
680.9788068622677210.04238627546455810.021193137732279
690.972939497018690.05412100596261970.0270605029813098
700.967312597348830.06537480530233940.0326874026511697
710.9583932111169530.08321357776609350.0416067888830468
720.9535032034909150.09299359301817080.0464967965090854
730.9412538493156140.1174923013687720.058746150684386
740.9306035366386320.1387929267227350.0693964633613676
750.9183772713329810.1632454573340380.0816227286670189
760.9851678729037580.0296642541924840.014832127096242
770.9811797351945740.0376405296108520.018820264805426
780.9752127785548310.04957444289033760.0247872214451688
790.968005703540360.06398859291927940.0319942964596397
800.9592742171252690.08145156574946160.0407257828747308
810.9544144501644050.09117109967119080.0455855498355954
820.9962892061380160.007421587723968470.00371079386198424
830.9961189048283450.007762190343310670.00388109517165534
840.9961149599115840.007770080176831630.00388504008841581
850.9951987371462120.009602525707575590.0048012628537878
860.9946223203665510.01075535926689710.00537767963344854
870.992504953560490.01499009287901970.00749504643950987
880.9897984712793850.02040305744123050.0102015287206152
890.9868358187778980.02632836244420310.0131641812221015
900.998157666721230.003684666557539580.00184233327876979
910.9978012003424850.004397599315030490.00219879965751525
920.9970275019554930.005944996089014750.00297249804450738
930.9957438159594350.008512368081130020.00425618404056501
940.994160728691170.01167854261766050.00583927130883027
950.9946929520590330.01061409588193470.00530704794096736
960.9926997477500610.01460050449987710.00730025224993853
970.9910886400984980.01782271980300450.00891135990150223
980.9879094252074860.02418114958502890.0120905747925145
990.9865188820491930.02696223590161470.0134811179508074
1000.9841804951379830.03163900972403450.0158195048620173
1010.9810216953852790.03795660922944160.0189783046147208
1020.9749817363392270.05003652732154670.0250182636607734
1030.9736496463544760.05270070729104890.0263503536455244
1040.9683873808838630.06322523823227310.0316126191161366
1050.9592088255949830.08158234881003390.0407911744050169
1060.9680215920260340.06395681594793150.0319784079739657
1070.9714132271668730.05717354566625340.0285867728331267
1080.9627553479014170.07448930419716570.0372446520985829
1090.988326077051480.0233478458970390.0116739229485195
1100.9925779300912370.01484413981752510.00742206990876255
1110.9972494669349250.00550106613015040.0027505330650752
1120.9994826609499860.00103467810002770.000517339050013848
1130.9991696858790990.001660628241801570.000830314120900784
1140.9992899346683810.001420130663237340.000710065331618672
1150.9989213081278170.002157383744366350.00107869187218318
1160.99832944310390.003341113792200230.00167055689610012
1170.9975039804341250.004992039131749390.00249601956587469
1180.9961642920209140.00767141595817140.0038357079790857
1190.994895572994310.0102088540113810.00510442700569051
1200.9933529912306340.01329401753873270.00664700876936637
1210.9955883915397390.008823216920521150.00441160846026057
1220.9957686018957810.0084627962084380.004231398104219
1230.9976971483474340.004605703305132180.00230285165256609
1240.9977089686112770.004582062777446670.00229103138872334
1250.997707172817560.004585654364879750.00229282718243987
1260.9964375050395560.007124989920887720.00356249496044386
1270.9981790402209750.003641919558049960.00182095977902498
1280.9970628878052550.005874224389490540.00293711219474527
1290.9951903828736580.009619234252683790.00480961712634189
1300.9950496729273770.00990065414524690.00495032707262345
1310.9943538016690020.01129239666199640.00564619833099818
1320.9944026784777960.01119464304440780.00559732152220392
1330.9951164105823190.00976717883536190.00488358941768095
1340.9940420663815980.01191586723680370.00595793361840183
1350.9904836393014470.01903272139710690.00951636069855346
1360.9963492904107410.007301419178518770.00365070958925939
1370.9938756864776440.01224862704471140.00612431352235569
1380.9971886567586010.005622686482798740.00281134324139937
1390.9999340354260050.0001319291479890866.5964573994543e-05
1400.9998505538817020.0002988922365960510.000149446118298026
1410.9999989692780592.06144388274228e-061.03072194137114e-06
1420.9999964790172487.04196550358213e-063.52098275179107e-06
1430.9999897738277412.045234451884e-051.022617225942e-05
1440.9999944840228381.10319543247192e-055.51597716235962e-06
1450.9999995710191318.57961737630239e-074.28980868815119e-07
1460.9999999263307781.47338444629587e-077.36692223147934e-08
1470.9999998785600772.42879846306031e-071.21439923153016e-07
1480.9999997925935594.1481288167505e-072.07406440837525e-07
1490.999998152695543.69460892083898e-061.84730446041949e-06
1500.9999997823853084.35229385066201e-072.17614692533101e-07
1510.9999964964743457.00705130927953e-063.50352565463976e-06
1520.9999434855910690.0001130288178627775.65144089313885e-05
1530.9992971635238150.001405672952370830.000702836476185417







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level480.335664335664336NOK
5% type I error level900.629370629370629NOK
10% type I error level1110.776223776223776NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 48 & 0.335664335664336 & NOK \tabularnewline
5% type I error level & 90 & 0.629370629370629 & NOK \tabularnewline
10% type I error level & 111 & 0.776223776223776 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=153377&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]48[/C][C]0.335664335664336[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]90[/C][C]0.629370629370629[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]111[/C][C]0.776223776223776[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=153377&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=153377&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level480.335664335664336NOK
5% type I error level900.629370629370629NOK
10% type I error level1110.776223776223776NOK



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}