Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationTue, 24 Nov 2009 04:54:35 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/24/t125906371877sa2ka5hbyu7wi.htm/, Retrieved Sat, 12 Oct 2024 13:14:11 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=59007, Retrieved Sat, 12 Oct 2024 13:14:11 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsJSSHWWS8P3
Estimated Impact189
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Explorative Data Analysis] [Run Sequence gebo...] [2008-12-12 13:32:37] [76963dc1903f0f612b6153510a3818cf]
- R  D  [Univariate Explorative Data Analysis] [Run Sequence gebo...] [2008-12-17 12:14:40] [76963dc1903f0f612b6153510a3818cf]
-         [Univariate Explorative Data Analysis] [Run Sequence Plot...] [2008-12-22 18:19:51] [1ce0d16c8f4225c977b42c8fa93bc163]
- RMP       [(Partial) Autocorrelation Function] [Identifying Integ...] [2009-11-22 12:16:10] [b98453cac15ba1066b407e146608df68]
F   PD          [(Partial) Autocorrelation Function] [Workshop 8] [2009-11-24 11:54:35] [c8fd62404619100d8e91184019148412] [Current]
-   P             [(Partial) Autocorrelation Function] [WS 8 review 2] [2009-12-02 15:35:52] [83058a88a37d754675a5cd22dab372fc]
-   P             [(Partial) Autocorrelation Function] [W8. herberekening] [2009-12-03 21:11:09] [d31db4f83c6a129f6d3e47077769e868]
Feedback Forum
2009-12-02 15:42:35 [Brecht Thijs] [reply
In de vorige berekening is vooral de niet-seizoenale trend duidelijk zichtbaar, mij lijkt het dan handiger om eerst niet-seizoenaal te differentieren om zo te kijken of er seizoenaliteit optreed die nu misschien door de LT-trend wordt 'verdoezeld'.
Dit heb ik als volgt gedaan:
http://www.freestatistics.org/blog/index.php?v=date/2009/Dec/02/t1259768334k3hod41x3g30v37.htm/


Post a new message
Dataseries X:
11.1
10.9
10
9.2
9.2
9.5
9.6
9.5
9.1
8.9
9
10.1
10.3
10.2
9.6
9.2
9.3
9.4
9.4
9.2
9
9
9
9.8
10
9.8
9.3
9
9
9.1
9.1
9.1
9.2
8.8
8.3
8.4
8.1
7.7
7.9
7.9
8
7.9
7.6
7.1
6.8
6.5
6.9
8.2
8.7
8.3
7.9
7.5
7.8
8.3
8.4
8.2
7.7
7.2
7.3
8.1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59007&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59007&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59007&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.8832996.11970
20.6248264.32893.8e-05
30.3669942.54260.007141
40.2226471.54250.064755
50.2035341.41010.082475
60.2425211.68020.049705
70.2460741.70490.047344
80.16491.14250.129464
9-0.001962-0.01360.494604
10-0.209218-1.44950.07685
11-0.391299-2.7110.004639
12-0.491934-3.40820.000666
13-0.485306-3.36230.000762
14-0.404437-2.8020.003651
15-0.317382-2.19890.016369
16-0.271059-1.8780.033235
17-0.276916-1.91850.030501
18-0.310399-2.15050.01829
19-0.32757-2.26950.013886
20-0.302575-2.09630.020676
21-0.237338-1.64430.053322
22-0.154847-1.07280.14436
23-0.076957-0.53320.298187
24-0.023336-0.16170.436119
250.0079570.05510.478134
260.0173560.12020.452395
270.0123480.08560.46609
280.0012490.00870.496565
290.0036150.0250.490062
300.0317020.21960.413542
310.0805890.55830.289604
320.1187840.8230.2073
330.1240720.85960.197141
340.097680.67670.250907
350.0651020.4510.326995
360.0512130.35480.362143
370.0585940.4060.343291
380.0684080.47390.318843
390.0669270.46370.322486
400.0515280.3570.361329
410.0282850.1960.422732
420.0064940.0450.48215
43-0.010639-0.07370.470773
44-0.018891-0.13090.448209
45-0.019014-0.13170.447872
46-0.011935-0.08270.467223
47-0.003685-0.02550.489868
48NANANA
49NANANA
50NANANA
51NANANA
52NANANA
53NANANA
54NANANA
55NANANA
56NANANA
57NANANA
58NANANA
59NANANA
60NANANA

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.883299 & 6.1197 & 0 \tabularnewline
2 & 0.624826 & 4.3289 & 3.8e-05 \tabularnewline
3 & 0.366994 & 2.5426 & 0.007141 \tabularnewline
4 & 0.222647 & 1.5425 & 0.064755 \tabularnewline
5 & 0.203534 & 1.4101 & 0.082475 \tabularnewline
6 & 0.242521 & 1.6802 & 0.049705 \tabularnewline
7 & 0.246074 & 1.7049 & 0.047344 \tabularnewline
8 & 0.1649 & 1.1425 & 0.129464 \tabularnewline
9 & -0.001962 & -0.0136 & 0.494604 \tabularnewline
10 & -0.209218 & -1.4495 & 0.07685 \tabularnewline
11 & -0.391299 & -2.711 & 0.004639 \tabularnewline
12 & -0.491934 & -3.4082 & 0.000666 \tabularnewline
13 & -0.485306 & -3.3623 & 0.000762 \tabularnewline
14 & -0.404437 & -2.802 & 0.003651 \tabularnewline
15 & -0.317382 & -2.1989 & 0.016369 \tabularnewline
16 & -0.271059 & -1.878 & 0.033235 \tabularnewline
17 & -0.276916 & -1.9185 & 0.030501 \tabularnewline
18 & -0.310399 & -2.1505 & 0.01829 \tabularnewline
19 & -0.32757 & -2.2695 & 0.013886 \tabularnewline
20 & -0.302575 & -2.0963 & 0.020676 \tabularnewline
21 & -0.237338 & -1.6443 & 0.053322 \tabularnewline
22 & -0.154847 & -1.0728 & 0.14436 \tabularnewline
23 & -0.076957 & -0.5332 & 0.298187 \tabularnewline
24 & -0.023336 & -0.1617 & 0.436119 \tabularnewline
25 & 0.007957 & 0.0551 & 0.478134 \tabularnewline
26 & 0.017356 & 0.1202 & 0.452395 \tabularnewline
27 & 0.012348 & 0.0856 & 0.46609 \tabularnewline
28 & 0.001249 & 0.0087 & 0.496565 \tabularnewline
29 & 0.003615 & 0.025 & 0.490062 \tabularnewline
30 & 0.031702 & 0.2196 & 0.413542 \tabularnewline
31 & 0.080589 & 0.5583 & 0.289604 \tabularnewline
32 & 0.118784 & 0.823 & 0.2073 \tabularnewline
33 & 0.124072 & 0.8596 & 0.197141 \tabularnewline
34 & 0.09768 & 0.6767 & 0.250907 \tabularnewline
35 & 0.065102 & 0.451 & 0.326995 \tabularnewline
36 & 0.051213 & 0.3548 & 0.362143 \tabularnewline
37 & 0.058594 & 0.406 & 0.343291 \tabularnewline
38 & 0.068408 & 0.4739 & 0.318843 \tabularnewline
39 & 0.066927 & 0.4637 & 0.322486 \tabularnewline
40 & 0.051528 & 0.357 & 0.361329 \tabularnewline
41 & 0.028285 & 0.196 & 0.422732 \tabularnewline
42 & 0.006494 & 0.045 & 0.48215 \tabularnewline
43 & -0.010639 & -0.0737 & 0.470773 \tabularnewline
44 & -0.018891 & -0.1309 & 0.448209 \tabularnewline
45 & -0.019014 & -0.1317 & 0.447872 \tabularnewline
46 & -0.011935 & -0.0827 & 0.467223 \tabularnewline
47 & -0.003685 & -0.0255 & 0.489868 \tabularnewline
48 & NA & NA & NA \tabularnewline
49 & NA & NA & NA \tabularnewline
50 & NA & NA & NA \tabularnewline
51 & NA & NA & NA \tabularnewline
52 & NA & NA & NA \tabularnewline
53 & NA & NA & NA \tabularnewline
54 & NA & NA & NA \tabularnewline
55 & NA & NA & NA \tabularnewline
56 & NA & NA & NA \tabularnewline
57 & NA & NA & NA \tabularnewline
58 & NA & NA & NA \tabularnewline
59 & NA & NA & NA \tabularnewline
60 & NA & NA & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59007&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.883299[/C][C]6.1197[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.624826[/C][C]4.3289[/C][C]3.8e-05[/C][/ROW]
[ROW][C]3[/C][C]0.366994[/C][C]2.5426[/C][C]0.007141[/C][/ROW]
[ROW][C]4[/C][C]0.222647[/C][C]1.5425[/C][C]0.064755[/C][/ROW]
[ROW][C]5[/C][C]0.203534[/C][C]1.4101[/C][C]0.082475[/C][/ROW]
[ROW][C]6[/C][C]0.242521[/C][C]1.6802[/C][C]0.049705[/C][/ROW]
[ROW][C]7[/C][C]0.246074[/C][C]1.7049[/C][C]0.047344[/C][/ROW]
[ROW][C]8[/C][C]0.1649[/C][C]1.1425[/C][C]0.129464[/C][/ROW]
[ROW][C]9[/C][C]-0.001962[/C][C]-0.0136[/C][C]0.494604[/C][/ROW]
[ROW][C]10[/C][C]-0.209218[/C][C]-1.4495[/C][C]0.07685[/C][/ROW]
[ROW][C]11[/C][C]-0.391299[/C][C]-2.711[/C][C]0.004639[/C][/ROW]
[ROW][C]12[/C][C]-0.491934[/C][C]-3.4082[/C][C]0.000666[/C][/ROW]
[ROW][C]13[/C][C]-0.485306[/C][C]-3.3623[/C][C]0.000762[/C][/ROW]
[ROW][C]14[/C][C]-0.404437[/C][C]-2.802[/C][C]0.003651[/C][/ROW]
[ROW][C]15[/C][C]-0.317382[/C][C]-2.1989[/C][C]0.016369[/C][/ROW]
[ROW][C]16[/C][C]-0.271059[/C][C]-1.878[/C][C]0.033235[/C][/ROW]
[ROW][C]17[/C][C]-0.276916[/C][C]-1.9185[/C][C]0.030501[/C][/ROW]
[ROW][C]18[/C][C]-0.310399[/C][C]-2.1505[/C][C]0.01829[/C][/ROW]
[ROW][C]19[/C][C]-0.32757[/C][C]-2.2695[/C][C]0.013886[/C][/ROW]
[ROW][C]20[/C][C]-0.302575[/C][C]-2.0963[/C][C]0.020676[/C][/ROW]
[ROW][C]21[/C][C]-0.237338[/C][C]-1.6443[/C][C]0.053322[/C][/ROW]
[ROW][C]22[/C][C]-0.154847[/C][C]-1.0728[/C][C]0.14436[/C][/ROW]
[ROW][C]23[/C][C]-0.076957[/C][C]-0.5332[/C][C]0.298187[/C][/ROW]
[ROW][C]24[/C][C]-0.023336[/C][C]-0.1617[/C][C]0.436119[/C][/ROW]
[ROW][C]25[/C][C]0.007957[/C][C]0.0551[/C][C]0.478134[/C][/ROW]
[ROW][C]26[/C][C]0.017356[/C][C]0.1202[/C][C]0.452395[/C][/ROW]
[ROW][C]27[/C][C]0.012348[/C][C]0.0856[/C][C]0.46609[/C][/ROW]
[ROW][C]28[/C][C]0.001249[/C][C]0.0087[/C][C]0.496565[/C][/ROW]
[ROW][C]29[/C][C]0.003615[/C][C]0.025[/C][C]0.490062[/C][/ROW]
[ROW][C]30[/C][C]0.031702[/C][C]0.2196[/C][C]0.413542[/C][/ROW]
[ROW][C]31[/C][C]0.080589[/C][C]0.5583[/C][C]0.289604[/C][/ROW]
[ROW][C]32[/C][C]0.118784[/C][C]0.823[/C][C]0.2073[/C][/ROW]
[ROW][C]33[/C][C]0.124072[/C][C]0.8596[/C][C]0.197141[/C][/ROW]
[ROW][C]34[/C][C]0.09768[/C][C]0.6767[/C][C]0.250907[/C][/ROW]
[ROW][C]35[/C][C]0.065102[/C][C]0.451[/C][C]0.326995[/C][/ROW]
[ROW][C]36[/C][C]0.051213[/C][C]0.3548[/C][C]0.362143[/C][/ROW]
[ROW][C]37[/C][C]0.058594[/C][C]0.406[/C][C]0.343291[/C][/ROW]
[ROW][C]38[/C][C]0.068408[/C][C]0.4739[/C][C]0.318843[/C][/ROW]
[ROW][C]39[/C][C]0.066927[/C][C]0.4637[/C][C]0.322486[/C][/ROW]
[ROW][C]40[/C][C]0.051528[/C][C]0.357[/C][C]0.361329[/C][/ROW]
[ROW][C]41[/C][C]0.028285[/C][C]0.196[/C][C]0.422732[/C][/ROW]
[ROW][C]42[/C][C]0.006494[/C][C]0.045[/C][C]0.48215[/C][/ROW]
[ROW][C]43[/C][C]-0.010639[/C][C]-0.0737[/C][C]0.470773[/C][/ROW]
[ROW][C]44[/C][C]-0.018891[/C][C]-0.1309[/C][C]0.448209[/C][/ROW]
[ROW][C]45[/C][C]-0.019014[/C][C]-0.1317[/C][C]0.447872[/C][/ROW]
[ROW][C]46[/C][C]-0.011935[/C][C]-0.0827[/C][C]0.467223[/C][/ROW]
[ROW][C]47[/C][C]-0.003685[/C][C]-0.0255[/C][C]0.489868[/C][/ROW]
[ROW][C]48[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]49[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]50[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]51[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]52[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]53[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]54[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]55[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]56[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]57[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]58[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]59[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]60[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59007&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59007&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.8832996.11970
20.6248264.32893.8e-05
30.3669942.54260.007141
40.2226471.54250.064755
50.2035341.41010.082475
60.2425211.68020.049705
70.2460741.70490.047344
80.16491.14250.129464
9-0.001962-0.01360.494604
10-0.209218-1.44950.07685
11-0.391299-2.7110.004639
12-0.491934-3.40820.000666
13-0.485306-3.36230.000762
14-0.404437-2.8020.003651
15-0.317382-2.19890.016369
16-0.271059-1.8780.033235
17-0.276916-1.91850.030501
18-0.310399-2.15050.01829
19-0.32757-2.26950.013886
20-0.302575-2.09630.020676
21-0.237338-1.64430.053322
22-0.154847-1.07280.14436
23-0.076957-0.53320.298187
24-0.023336-0.16170.436119
250.0079570.05510.478134
260.0173560.12020.452395
270.0123480.08560.46609
280.0012490.00870.496565
290.0036150.0250.490062
300.0317020.21960.413542
310.0805890.55830.289604
320.1187840.8230.2073
330.1240720.85960.197141
340.097680.67670.250907
350.0651020.4510.326995
360.0512130.35480.362143
370.0585940.4060.343291
380.0684080.47390.318843
390.0669270.46370.322486
400.0515280.3570.361329
410.0282850.1960.422732
420.0064940.0450.48215
43-0.010639-0.07370.470773
44-0.018891-0.13090.448209
45-0.019014-0.13170.447872
46-0.011935-0.08270.467223
47-0.003685-0.02550.489868
48NANANA
49NANANA
50NANANA
51NANANA
52NANANA
53NANANA
54NANANA
55NANANA
56NANANA
57NANANA
58NANANA
59NANANA
60NANANA







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.8832996.11970
2-0.707017-4.89846e-06
30.4492833.11270.00156
40.2382651.65070.05266
5-0.138477-0.95940.171083
6-0.080097-0.55490.290761
7-0.149428-1.03530.152865
8-0.068684-0.47590.318167
9-0.287662-1.9930.025983
10-0.194025-1.34420.092594
11-0.050794-0.35190.363222
12-0.012466-0.08640.465766
130.1184970.8210.20786
14-0.112725-0.7810.219325
15-0.028224-0.19550.422896
160.2002391.38730.08588
17-0.067082-0.46480.322103
18-0.092122-0.63820.263175
190.0118990.08240.467321
20-0.09062-0.62780.266545
21-0.102755-0.71190.239983
22-0.138322-0.95830.171352
230.0468120.32430.373551
24-0.091115-0.63130.265431
250.0917180.63540.264079
26-0.119416-0.82730.206069
27-0.0914-0.63320.264793
280.061860.42860.335072
290.0832070.57650.283495
30-0.038819-0.26890.394562
31-0.05372-0.37220.355699
32-0.110719-0.76710.223393
330.0181930.1260.450111
34-0.002583-0.01790.492897
350.0038020.02630.489548
36-0.063613-0.44070.330697
37-0.063178-0.43770.33178
38-0.020327-0.14080.444297
39-0.060684-0.42040.338023
40-0.049799-0.3450.365794
41-0.018662-0.12930.448832
420.0185510.12850.449134
43-0.038947-0.26980.394222
44-0.015863-0.10990.456472
45-0.039893-0.27640.391718
460.0575770.39890.345866
470.0306780.21250.416292
48NANANA
49NANANA
50NANANA
51NANANA
52NANANA
53NANANA
54NANANA
55NANANA
56NANANA
57NANANA
58NANANA
59NANANA
60NANANA

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.883299 & 6.1197 & 0 \tabularnewline
2 & -0.707017 & -4.8984 & 6e-06 \tabularnewline
3 & 0.449283 & 3.1127 & 0.00156 \tabularnewline
4 & 0.238265 & 1.6507 & 0.05266 \tabularnewline
5 & -0.138477 & -0.9594 & 0.171083 \tabularnewline
6 & -0.080097 & -0.5549 & 0.290761 \tabularnewline
7 & -0.149428 & -1.0353 & 0.152865 \tabularnewline
8 & -0.068684 & -0.4759 & 0.318167 \tabularnewline
9 & -0.287662 & -1.993 & 0.025983 \tabularnewline
10 & -0.194025 & -1.3442 & 0.092594 \tabularnewline
11 & -0.050794 & -0.3519 & 0.363222 \tabularnewline
12 & -0.012466 & -0.0864 & 0.465766 \tabularnewline
13 & 0.118497 & 0.821 & 0.20786 \tabularnewline
14 & -0.112725 & -0.781 & 0.219325 \tabularnewline
15 & -0.028224 & -0.1955 & 0.422896 \tabularnewline
16 & 0.200239 & 1.3873 & 0.08588 \tabularnewline
17 & -0.067082 & -0.4648 & 0.322103 \tabularnewline
18 & -0.092122 & -0.6382 & 0.263175 \tabularnewline
19 & 0.011899 & 0.0824 & 0.467321 \tabularnewline
20 & -0.09062 & -0.6278 & 0.266545 \tabularnewline
21 & -0.102755 & -0.7119 & 0.239983 \tabularnewline
22 & -0.138322 & -0.9583 & 0.171352 \tabularnewline
23 & 0.046812 & 0.3243 & 0.373551 \tabularnewline
24 & -0.091115 & -0.6313 & 0.265431 \tabularnewline
25 & 0.091718 & 0.6354 & 0.264079 \tabularnewline
26 & -0.119416 & -0.8273 & 0.206069 \tabularnewline
27 & -0.0914 & -0.6332 & 0.264793 \tabularnewline
28 & 0.06186 & 0.4286 & 0.335072 \tabularnewline
29 & 0.083207 & 0.5765 & 0.283495 \tabularnewline
30 & -0.038819 & -0.2689 & 0.394562 \tabularnewline
31 & -0.05372 & -0.3722 & 0.355699 \tabularnewline
32 & -0.110719 & -0.7671 & 0.223393 \tabularnewline
33 & 0.018193 & 0.126 & 0.450111 \tabularnewline
34 & -0.002583 & -0.0179 & 0.492897 \tabularnewline
35 & 0.003802 & 0.0263 & 0.489548 \tabularnewline
36 & -0.063613 & -0.4407 & 0.330697 \tabularnewline
37 & -0.063178 & -0.4377 & 0.33178 \tabularnewline
38 & -0.020327 & -0.1408 & 0.444297 \tabularnewline
39 & -0.060684 & -0.4204 & 0.338023 \tabularnewline
40 & -0.049799 & -0.345 & 0.365794 \tabularnewline
41 & -0.018662 & -0.1293 & 0.448832 \tabularnewline
42 & 0.018551 & 0.1285 & 0.449134 \tabularnewline
43 & -0.038947 & -0.2698 & 0.394222 \tabularnewline
44 & -0.015863 & -0.1099 & 0.456472 \tabularnewline
45 & -0.039893 & -0.2764 & 0.391718 \tabularnewline
46 & 0.057577 & 0.3989 & 0.345866 \tabularnewline
47 & 0.030678 & 0.2125 & 0.416292 \tabularnewline
48 & NA & NA & NA \tabularnewline
49 & NA & NA & NA \tabularnewline
50 & NA & NA & NA \tabularnewline
51 & NA & NA & NA \tabularnewline
52 & NA & NA & NA \tabularnewline
53 & NA & NA & NA \tabularnewline
54 & NA & NA & NA \tabularnewline
55 & NA & NA & NA \tabularnewline
56 & NA & NA & NA \tabularnewline
57 & NA & NA & NA \tabularnewline
58 & NA & NA & NA \tabularnewline
59 & NA & NA & NA \tabularnewline
60 & NA & NA & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59007&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.883299[/C][C]6.1197[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]-0.707017[/C][C]-4.8984[/C][C]6e-06[/C][/ROW]
[ROW][C]3[/C][C]0.449283[/C][C]3.1127[/C][C]0.00156[/C][/ROW]
[ROW][C]4[/C][C]0.238265[/C][C]1.6507[/C][C]0.05266[/C][/ROW]
[ROW][C]5[/C][C]-0.138477[/C][C]-0.9594[/C][C]0.171083[/C][/ROW]
[ROW][C]6[/C][C]-0.080097[/C][C]-0.5549[/C][C]0.290761[/C][/ROW]
[ROW][C]7[/C][C]-0.149428[/C][C]-1.0353[/C][C]0.152865[/C][/ROW]
[ROW][C]8[/C][C]-0.068684[/C][C]-0.4759[/C][C]0.318167[/C][/ROW]
[ROW][C]9[/C][C]-0.287662[/C][C]-1.993[/C][C]0.025983[/C][/ROW]
[ROW][C]10[/C][C]-0.194025[/C][C]-1.3442[/C][C]0.092594[/C][/ROW]
[ROW][C]11[/C][C]-0.050794[/C][C]-0.3519[/C][C]0.363222[/C][/ROW]
[ROW][C]12[/C][C]-0.012466[/C][C]-0.0864[/C][C]0.465766[/C][/ROW]
[ROW][C]13[/C][C]0.118497[/C][C]0.821[/C][C]0.20786[/C][/ROW]
[ROW][C]14[/C][C]-0.112725[/C][C]-0.781[/C][C]0.219325[/C][/ROW]
[ROW][C]15[/C][C]-0.028224[/C][C]-0.1955[/C][C]0.422896[/C][/ROW]
[ROW][C]16[/C][C]0.200239[/C][C]1.3873[/C][C]0.08588[/C][/ROW]
[ROW][C]17[/C][C]-0.067082[/C][C]-0.4648[/C][C]0.322103[/C][/ROW]
[ROW][C]18[/C][C]-0.092122[/C][C]-0.6382[/C][C]0.263175[/C][/ROW]
[ROW][C]19[/C][C]0.011899[/C][C]0.0824[/C][C]0.467321[/C][/ROW]
[ROW][C]20[/C][C]-0.09062[/C][C]-0.6278[/C][C]0.266545[/C][/ROW]
[ROW][C]21[/C][C]-0.102755[/C][C]-0.7119[/C][C]0.239983[/C][/ROW]
[ROW][C]22[/C][C]-0.138322[/C][C]-0.9583[/C][C]0.171352[/C][/ROW]
[ROW][C]23[/C][C]0.046812[/C][C]0.3243[/C][C]0.373551[/C][/ROW]
[ROW][C]24[/C][C]-0.091115[/C][C]-0.6313[/C][C]0.265431[/C][/ROW]
[ROW][C]25[/C][C]0.091718[/C][C]0.6354[/C][C]0.264079[/C][/ROW]
[ROW][C]26[/C][C]-0.119416[/C][C]-0.8273[/C][C]0.206069[/C][/ROW]
[ROW][C]27[/C][C]-0.0914[/C][C]-0.6332[/C][C]0.264793[/C][/ROW]
[ROW][C]28[/C][C]0.06186[/C][C]0.4286[/C][C]0.335072[/C][/ROW]
[ROW][C]29[/C][C]0.083207[/C][C]0.5765[/C][C]0.283495[/C][/ROW]
[ROW][C]30[/C][C]-0.038819[/C][C]-0.2689[/C][C]0.394562[/C][/ROW]
[ROW][C]31[/C][C]-0.05372[/C][C]-0.3722[/C][C]0.355699[/C][/ROW]
[ROW][C]32[/C][C]-0.110719[/C][C]-0.7671[/C][C]0.223393[/C][/ROW]
[ROW][C]33[/C][C]0.018193[/C][C]0.126[/C][C]0.450111[/C][/ROW]
[ROW][C]34[/C][C]-0.002583[/C][C]-0.0179[/C][C]0.492897[/C][/ROW]
[ROW][C]35[/C][C]0.003802[/C][C]0.0263[/C][C]0.489548[/C][/ROW]
[ROW][C]36[/C][C]-0.063613[/C][C]-0.4407[/C][C]0.330697[/C][/ROW]
[ROW][C]37[/C][C]-0.063178[/C][C]-0.4377[/C][C]0.33178[/C][/ROW]
[ROW][C]38[/C][C]-0.020327[/C][C]-0.1408[/C][C]0.444297[/C][/ROW]
[ROW][C]39[/C][C]-0.060684[/C][C]-0.4204[/C][C]0.338023[/C][/ROW]
[ROW][C]40[/C][C]-0.049799[/C][C]-0.345[/C][C]0.365794[/C][/ROW]
[ROW][C]41[/C][C]-0.018662[/C][C]-0.1293[/C][C]0.448832[/C][/ROW]
[ROW][C]42[/C][C]0.018551[/C][C]0.1285[/C][C]0.449134[/C][/ROW]
[ROW][C]43[/C][C]-0.038947[/C][C]-0.2698[/C][C]0.394222[/C][/ROW]
[ROW][C]44[/C][C]-0.015863[/C][C]-0.1099[/C][C]0.456472[/C][/ROW]
[ROW][C]45[/C][C]-0.039893[/C][C]-0.2764[/C][C]0.391718[/C][/ROW]
[ROW][C]46[/C][C]0.057577[/C][C]0.3989[/C][C]0.345866[/C][/ROW]
[ROW][C]47[/C][C]0.030678[/C][C]0.2125[/C][C]0.416292[/C][/ROW]
[ROW][C]48[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]49[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]50[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]51[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]52[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]53[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]54[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]55[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]56[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]57[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]58[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]59[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]60[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59007&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59007&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.8832996.11970
2-0.707017-4.89846e-06
30.4492833.11270.00156
40.2382651.65070.05266
5-0.138477-0.95940.171083
6-0.080097-0.55490.290761
7-0.149428-1.03530.152865
8-0.068684-0.47590.318167
9-0.287662-1.9930.025983
10-0.194025-1.34420.092594
11-0.050794-0.35190.363222
12-0.012466-0.08640.465766
130.1184970.8210.20786
14-0.112725-0.7810.219325
15-0.028224-0.19550.422896
160.2002391.38730.08588
17-0.067082-0.46480.322103
18-0.092122-0.63820.263175
190.0118990.08240.467321
20-0.09062-0.62780.266545
21-0.102755-0.71190.239983
22-0.138322-0.95830.171352
230.0468120.32430.373551
24-0.091115-0.63130.265431
250.0917180.63540.264079
26-0.119416-0.82730.206069
27-0.0914-0.63320.264793
280.061860.42860.335072
290.0832070.57650.283495
30-0.038819-0.26890.394562
31-0.05372-0.37220.355699
32-0.110719-0.76710.223393
330.0181930.1260.450111
34-0.002583-0.01790.492897
350.0038020.02630.489548
36-0.063613-0.44070.330697
37-0.063178-0.43770.33178
38-0.020327-0.14080.444297
39-0.060684-0.42040.338023
40-0.049799-0.3450.365794
41-0.018662-0.12930.448832
420.0185510.12850.449134
43-0.038947-0.26980.394222
44-0.015863-0.10990.456472
45-0.039893-0.27640.391718
460.0575770.39890.345866
470.0306780.21250.416292
48NANANA
49NANANA
50NANANA
51NANANA
52NANANA
53NANANA
54NANANA
55NANANA
56NANANA
57NANANA
58NANANA
59NANANA
60NANANA



Parameters (Session):
par1 = 60 ; par2 = 1 ; par3 = 0 ; par4 = 1 ; par5 = 12 ; par6 = MA ; par7 = 0.95 ;
Parameters (R input):
par1 = 60 ; par2 = 1 ; par3 = 0 ; par4 = 1 ; par5 = 12 ; par6 = MA ; par7 = 0.95 ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep=''))
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF')
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')