Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationTue, 24 Nov 2009 08:33:55 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/24/t1259076913kqikd5mo32pxjos.htm/, Retrieved Thu, 12 Sep 2024 16:46:10 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=59122, Retrieved Thu, 12 Sep 2024 16:46:10 +0000
QR Codes:

Original text written by user:Uitleg in Word document
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact190
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Explorative Data Analysis] [Run Sequence gebo...] [2008-12-12 13:32:37] [76963dc1903f0f612b6153510a3818cf]
- R  D  [Univariate Explorative Data Analysis] [Run Sequence gebo...] [2008-12-17 12:14:40] [76963dc1903f0f612b6153510a3818cf]
-         [Univariate Explorative Data Analysis] [Run Sequence Plot...] [2008-12-22 18:19:51] [1ce0d16c8f4225c977b42c8fa93bc163]
- RMP       [(Partial) Autocorrelation Function] [Identifying Integ...] [2009-11-22 12:16:10] [b98453cac15ba1066b407e146608df68]
- R  D          [(Partial) Autocorrelation Function] [Bestedingen consu...] [2009-11-24 15:33:55] [8eb8270f5a1cfdf0409dcfcbf10be18b] [Current]
Feedback Forum

Post a new message
Dataseries X:
96.96
93.11
95.62
98.30
96.38
100.82
99.06
94.03
102.07
99.31
98.64
101.82
99.14
97.63
100.06
101.32
101.49
105.43
105.09
99.48
108.53
104.34
106.10
107.35
103.00
104.50
105.17
104.84
106.18
108.86
107.77
102.74
112.63
106.26
108.86
111.38
106.85
107.86
107.94
111.38
111.29
113.72
111.88
109.87
113.72
111.71
114.81
112.05
111.54
110.87
110.87
115.48
111.63
116.24
113.56
106.01
110.45
107.77
108.61
108.19




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59122&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59122&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59122&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.7852846.08280
20.7654015.92880
30.7616735.89990
40.6372424.93613e-06
50.6711865.1991e-06
60.6543455.06852e-06
70.5882814.55681.3e-05
80.4843763.7520.000199
90.505753.91750.000116
100.4276583.31260.000785
110.3758362.91120.002523
120.4524123.50440.000436
130.2721732.10820.019597
140.246671.91070.030413
150.1955461.51470.067551
160.1031870.79930.21364
170.1158610.89750.186531
180.0991140.76770.222827
190.0553180.42850.334913
20-0.03418-0.26480.396053
210.003440.02660.489416
22-0.06138-0.47540.318098
23-0.078771-0.61020.272031
24-0.020429-0.15820.4374
25-0.15007-1.16240.12483
26-0.157671-1.22130.113372
27-0.19041-1.47490.072732
28-0.24457-1.89440.031495
29-0.234553-1.81680.037118
30-0.23961-1.8560.034182
31-0.264478-2.04860.02244
32-0.330069-2.55670.006558
33-0.298684-2.31360.012067
34-0.339541-2.63010.005415
35-0.348644-2.70060.004491
36-0.304441-2.35820.01082

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.785284 & 6.0828 & 0 \tabularnewline
2 & 0.765401 & 5.9288 & 0 \tabularnewline
3 & 0.761673 & 5.8999 & 0 \tabularnewline
4 & 0.637242 & 4.9361 & 3e-06 \tabularnewline
5 & 0.671186 & 5.199 & 1e-06 \tabularnewline
6 & 0.654345 & 5.0685 & 2e-06 \tabularnewline
7 & 0.588281 & 4.5568 & 1.3e-05 \tabularnewline
8 & 0.484376 & 3.752 & 0.000199 \tabularnewline
9 & 0.50575 & 3.9175 & 0.000116 \tabularnewline
10 & 0.427658 & 3.3126 & 0.000785 \tabularnewline
11 & 0.375836 & 2.9112 & 0.002523 \tabularnewline
12 & 0.452412 & 3.5044 & 0.000436 \tabularnewline
13 & 0.272173 & 2.1082 & 0.019597 \tabularnewline
14 & 0.24667 & 1.9107 & 0.030413 \tabularnewline
15 & 0.195546 & 1.5147 & 0.067551 \tabularnewline
16 & 0.103187 & 0.7993 & 0.21364 \tabularnewline
17 & 0.115861 & 0.8975 & 0.186531 \tabularnewline
18 & 0.099114 & 0.7677 & 0.222827 \tabularnewline
19 & 0.055318 & 0.4285 & 0.334913 \tabularnewline
20 & -0.03418 & -0.2648 & 0.396053 \tabularnewline
21 & 0.00344 & 0.0266 & 0.489416 \tabularnewline
22 & -0.06138 & -0.4754 & 0.318098 \tabularnewline
23 & -0.078771 & -0.6102 & 0.272031 \tabularnewline
24 & -0.020429 & -0.1582 & 0.4374 \tabularnewline
25 & -0.15007 & -1.1624 & 0.12483 \tabularnewline
26 & -0.157671 & -1.2213 & 0.113372 \tabularnewline
27 & -0.19041 & -1.4749 & 0.072732 \tabularnewline
28 & -0.24457 & -1.8944 & 0.031495 \tabularnewline
29 & -0.234553 & -1.8168 & 0.037118 \tabularnewline
30 & -0.23961 & -1.856 & 0.034182 \tabularnewline
31 & -0.264478 & -2.0486 & 0.02244 \tabularnewline
32 & -0.330069 & -2.5567 & 0.006558 \tabularnewline
33 & -0.298684 & -2.3136 & 0.012067 \tabularnewline
34 & -0.339541 & -2.6301 & 0.005415 \tabularnewline
35 & -0.348644 & -2.7006 & 0.004491 \tabularnewline
36 & -0.304441 & -2.3582 & 0.01082 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59122&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.785284[/C][C]6.0828[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.765401[/C][C]5.9288[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]0.761673[/C][C]5.8999[/C][C]0[/C][/ROW]
[ROW][C]4[/C][C]0.637242[/C][C]4.9361[/C][C]3e-06[/C][/ROW]
[ROW][C]5[/C][C]0.671186[/C][C]5.199[/C][C]1e-06[/C][/ROW]
[ROW][C]6[/C][C]0.654345[/C][C]5.0685[/C][C]2e-06[/C][/ROW]
[ROW][C]7[/C][C]0.588281[/C][C]4.5568[/C][C]1.3e-05[/C][/ROW]
[ROW][C]8[/C][C]0.484376[/C][C]3.752[/C][C]0.000199[/C][/ROW]
[ROW][C]9[/C][C]0.50575[/C][C]3.9175[/C][C]0.000116[/C][/ROW]
[ROW][C]10[/C][C]0.427658[/C][C]3.3126[/C][C]0.000785[/C][/ROW]
[ROW][C]11[/C][C]0.375836[/C][C]2.9112[/C][C]0.002523[/C][/ROW]
[ROW][C]12[/C][C]0.452412[/C][C]3.5044[/C][C]0.000436[/C][/ROW]
[ROW][C]13[/C][C]0.272173[/C][C]2.1082[/C][C]0.019597[/C][/ROW]
[ROW][C]14[/C][C]0.24667[/C][C]1.9107[/C][C]0.030413[/C][/ROW]
[ROW][C]15[/C][C]0.195546[/C][C]1.5147[/C][C]0.067551[/C][/ROW]
[ROW][C]16[/C][C]0.103187[/C][C]0.7993[/C][C]0.21364[/C][/ROW]
[ROW][C]17[/C][C]0.115861[/C][C]0.8975[/C][C]0.186531[/C][/ROW]
[ROW][C]18[/C][C]0.099114[/C][C]0.7677[/C][C]0.222827[/C][/ROW]
[ROW][C]19[/C][C]0.055318[/C][C]0.4285[/C][C]0.334913[/C][/ROW]
[ROW][C]20[/C][C]-0.03418[/C][C]-0.2648[/C][C]0.396053[/C][/ROW]
[ROW][C]21[/C][C]0.00344[/C][C]0.0266[/C][C]0.489416[/C][/ROW]
[ROW][C]22[/C][C]-0.06138[/C][C]-0.4754[/C][C]0.318098[/C][/ROW]
[ROW][C]23[/C][C]-0.078771[/C][C]-0.6102[/C][C]0.272031[/C][/ROW]
[ROW][C]24[/C][C]-0.020429[/C][C]-0.1582[/C][C]0.4374[/C][/ROW]
[ROW][C]25[/C][C]-0.15007[/C][C]-1.1624[/C][C]0.12483[/C][/ROW]
[ROW][C]26[/C][C]-0.157671[/C][C]-1.2213[/C][C]0.113372[/C][/ROW]
[ROW][C]27[/C][C]-0.19041[/C][C]-1.4749[/C][C]0.072732[/C][/ROW]
[ROW][C]28[/C][C]-0.24457[/C][C]-1.8944[/C][C]0.031495[/C][/ROW]
[ROW][C]29[/C][C]-0.234553[/C][C]-1.8168[/C][C]0.037118[/C][/ROW]
[ROW][C]30[/C][C]-0.23961[/C][C]-1.856[/C][C]0.034182[/C][/ROW]
[ROW][C]31[/C][C]-0.264478[/C][C]-2.0486[/C][C]0.02244[/C][/ROW]
[ROW][C]32[/C][C]-0.330069[/C][C]-2.5567[/C][C]0.006558[/C][/ROW]
[ROW][C]33[/C][C]-0.298684[/C][C]-2.3136[/C][C]0.012067[/C][/ROW]
[ROW][C]34[/C][C]-0.339541[/C][C]-2.6301[/C][C]0.005415[/C][/ROW]
[ROW][C]35[/C][C]-0.348644[/C][C]-2.7006[/C][C]0.004491[/C][/ROW]
[ROW][C]36[/C][C]-0.304441[/C][C]-2.3582[/C][C]0.01082[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59122&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59122&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.7852846.08280
20.7654015.92880
30.7616735.89990
40.6372424.93613e-06
50.6711865.1991e-06
60.6543455.06852e-06
70.5882814.55681.3e-05
80.4843763.7520.000199
90.505753.91750.000116
100.4276583.31260.000785
110.3758362.91120.002523
120.4524123.50440.000436
130.2721732.10820.019597
140.246671.91070.030413
150.1955461.51470.067551
160.1031870.79930.21364
170.1158610.89750.186531
180.0991140.76770.222827
190.0553180.42850.334913
20-0.03418-0.26480.396053
210.003440.02660.489416
22-0.06138-0.47540.318098
23-0.078771-0.61020.272031
24-0.020429-0.15820.4374
25-0.15007-1.16240.12483
26-0.157671-1.22130.113372
27-0.19041-1.47490.072732
28-0.24457-1.89440.031495
29-0.234553-1.81680.037118
30-0.23961-1.8560.034182
31-0.264478-2.04860.02244
32-0.330069-2.55670.006558
33-0.298684-2.31360.012067
34-0.339541-2.63010.005415
35-0.348644-2.70060.004491
36-0.304441-2.35820.01082







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.7852846.08280
20.3879963.00540.001934
30.2737432.12040.019058
4-0.196398-1.52130.066719
50.1833451.42020.080364
60.1166350.90350.184949
7-0.034332-0.26590.395601
8-0.43129-3.34080.000721
90.2224541.72310.045009
10-0.002504-0.01940.492295
11-0.048848-0.37840.353244
120.1204390.93290.1773
13-0.325834-2.52390.007136
14-0.033197-0.25710.398975
15-0.180117-1.39520.084053
160.0978470.75790.225732
17-0.001687-0.01310.494808
180.1215420.94150.175122
19-0.067505-0.52290.301487
20-0.061401-0.47560.318039
210.114830.88950.188651
220.0135480.10490.458385
23-0.006331-0.0490.480526
24-0.104429-0.80890.210883
25-0.053705-0.4160.339448
26-0.100788-0.78070.219023
27-0.007204-0.05580.477842
28-0.084626-0.65550.257323
290.0019250.01490.494075
30-0.051867-0.40180.344643
310.0009780.00760.49699
32-0.037813-0.29290.385304
33-0.034651-0.26840.394655
340.0729070.56470.287179
35-0.095143-0.7370.232006
36-0.003217-0.02490.490101

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.785284 & 6.0828 & 0 \tabularnewline
2 & 0.387996 & 3.0054 & 0.001934 \tabularnewline
3 & 0.273743 & 2.1204 & 0.019058 \tabularnewline
4 & -0.196398 & -1.5213 & 0.066719 \tabularnewline
5 & 0.183345 & 1.4202 & 0.080364 \tabularnewline
6 & 0.116635 & 0.9035 & 0.184949 \tabularnewline
7 & -0.034332 & -0.2659 & 0.395601 \tabularnewline
8 & -0.43129 & -3.3408 & 0.000721 \tabularnewline
9 & 0.222454 & 1.7231 & 0.045009 \tabularnewline
10 & -0.002504 & -0.0194 & 0.492295 \tabularnewline
11 & -0.048848 & -0.3784 & 0.353244 \tabularnewline
12 & 0.120439 & 0.9329 & 0.1773 \tabularnewline
13 & -0.325834 & -2.5239 & 0.007136 \tabularnewline
14 & -0.033197 & -0.2571 & 0.398975 \tabularnewline
15 & -0.180117 & -1.3952 & 0.084053 \tabularnewline
16 & 0.097847 & 0.7579 & 0.225732 \tabularnewline
17 & -0.001687 & -0.0131 & 0.494808 \tabularnewline
18 & 0.121542 & 0.9415 & 0.175122 \tabularnewline
19 & -0.067505 & -0.5229 & 0.301487 \tabularnewline
20 & -0.061401 & -0.4756 & 0.318039 \tabularnewline
21 & 0.11483 & 0.8895 & 0.188651 \tabularnewline
22 & 0.013548 & 0.1049 & 0.458385 \tabularnewline
23 & -0.006331 & -0.049 & 0.480526 \tabularnewline
24 & -0.104429 & -0.8089 & 0.210883 \tabularnewline
25 & -0.053705 & -0.416 & 0.339448 \tabularnewline
26 & -0.100788 & -0.7807 & 0.219023 \tabularnewline
27 & -0.007204 & -0.0558 & 0.477842 \tabularnewline
28 & -0.084626 & -0.6555 & 0.257323 \tabularnewline
29 & 0.001925 & 0.0149 & 0.494075 \tabularnewline
30 & -0.051867 & -0.4018 & 0.344643 \tabularnewline
31 & 0.000978 & 0.0076 & 0.49699 \tabularnewline
32 & -0.037813 & -0.2929 & 0.385304 \tabularnewline
33 & -0.034651 & -0.2684 & 0.394655 \tabularnewline
34 & 0.072907 & 0.5647 & 0.287179 \tabularnewline
35 & -0.095143 & -0.737 & 0.232006 \tabularnewline
36 & -0.003217 & -0.0249 & 0.490101 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59122&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.785284[/C][C]6.0828[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.387996[/C][C]3.0054[/C][C]0.001934[/C][/ROW]
[ROW][C]3[/C][C]0.273743[/C][C]2.1204[/C][C]0.019058[/C][/ROW]
[ROW][C]4[/C][C]-0.196398[/C][C]-1.5213[/C][C]0.066719[/C][/ROW]
[ROW][C]5[/C][C]0.183345[/C][C]1.4202[/C][C]0.080364[/C][/ROW]
[ROW][C]6[/C][C]0.116635[/C][C]0.9035[/C][C]0.184949[/C][/ROW]
[ROW][C]7[/C][C]-0.034332[/C][C]-0.2659[/C][C]0.395601[/C][/ROW]
[ROW][C]8[/C][C]-0.43129[/C][C]-3.3408[/C][C]0.000721[/C][/ROW]
[ROW][C]9[/C][C]0.222454[/C][C]1.7231[/C][C]0.045009[/C][/ROW]
[ROW][C]10[/C][C]-0.002504[/C][C]-0.0194[/C][C]0.492295[/C][/ROW]
[ROW][C]11[/C][C]-0.048848[/C][C]-0.3784[/C][C]0.353244[/C][/ROW]
[ROW][C]12[/C][C]0.120439[/C][C]0.9329[/C][C]0.1773[/C][/ROW]
[ROW][C]13[/C][C]-0.325834[/C][C]-2.5239[/C][C]0.007136[/C][/ROW]
[ROW][C]14[/C][C]-0.033197[/C][C]-0.2571[/C][C]0.398975[/C][/ROW]
[ROW][C]15[/C][C]-0.180117[/C][C]-1.3952[/C][C]0.084053[/C][/ROW]
[ROW][C]16[/C][C]0.097847[/C][C]0.7579[/C][C]0.225732[/C][/ROW]
[ROW][C]17[/C][C]-0.001687[/C][C]-0.0131[/C][C]0.494808[/C][/ROW]
[ROW][C]18[/C][C]0.121542[/C][C]0.9415[/C][C]0.175122[/C][/ROW]
[ROW][C]19[/C][C]-0.067505[/C][C]-0.5229[/C][C]0.301487[/C][/ROW]
[ROW][C]20[/C][C]-0.061401[/C][C]-0.4756[/C][C]0.318039[/C][/ROW]
[ROW][C]21[/C][C]0.11483[/C][C]0.8895[/C][C]0.188651[/C][/ROW]
[ROW][C]22[/C][C]0.013548[/C][C]0.1049[/C][C]0.458385[/C][/ROW]
[ROW][C]23[/C][C]-0.006331[/C][C]-0.049[/C][C]0.480526[/C][/ROW]
[ROW][C]24[/C][C]-0.104429[/C][C]-0.8089[/C][C]0.210883[/C][/ROW]
[ROW][C]25[/C][C]-0.053705[/C][C]-0.416[/C][C]0.339448[/C][/ROW]
[ROW][C]26[/C][C]-0.100788[/C][C]-0.7807[/C][C]0.219023[/C][/ROW]
[ROW][C]27[/C][C]-0.007204[/C][C]-0.0558[/C][C]0.477842[/C][/ROW]
[ROW][C]28[/C][C]-0.084626[/C][C]-0.6555[/C][C]0.257323[/C][/ROW]
[ROW][C]29[/C][C]0.001925[/C][C]0.0149[/C][C]0.494075[/C][/ROW]
[ROW][C]30[/C][C]-0.051867[/C][C]-0.4018[/C][C]0.344643[/C][/ROW]
[ROW][C]31[/C][C]0.000978[/C][C]0.0076[/C][C]0.49699[/C][/ROW]
[ROW][C]32[/C][C]-0.037813[/C][C]-0.2929[/C][C]0.385304[/C][/ROW]
[ROW][C]33[/C][C]-0.034651[/C][C]-0.2684[/C][C]0.394655[/C][/ROW]
[ROW][C]34[/C][C]0.072907[/C][C]0.5647[/C][C]0.287179[/C][/ROW]
[ROW][C]35[/C][C]-0.095143[/C][C]-0.737[/C][C]0.232006[/C][/ROW]
[ROW][C]36[/C][C]-0.003217[/C][C]-0.0249[/C][C]0.490101[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59122&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59122&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.7852846.08280
20.3879963.00540.001934
30.2737432.12040.019058
4-0.196398-1.52130.066719
50.1833451.42020.080364
60.1166350.90350.184949
7-0.034332-0.26590.395601
8-0.43129-3.34080.000721
90.2224541.72310.045009
10-0.002504-0.01940.492295
11-0.048848-0.37840.353244
120.1204390.93290.1773
13-0.325834-2.52390.007136
14-0.033197-0.25710.398975
15-0.180117-1.39520.084053
160.0978470.75790.225732
17-0.001687-0.01310.494808
180.1215420.94150.175122
19-0.067505-0.52290.301487
20-0.061401-0.47560.318039
210.114830.88950.188651
220.0135480.10490.458385
23-0.006331-0.0490.480526
24-0.104429-0.80890.210883
25-0.053705-0.4160.339448
26-0.100788-0.78070.219023
27-0.007204-0.05580.477842
28-0.084626-0.65550.257323
290.0019250.01490.494075
30-0.051867-0.40180.344643
310.0009780.00760.49699
32-0.037813-0.29290.385304
33-0.034651-0.26840.394655
340.0729070.56470.287179
35-0.095143-0.7370.232006
36-0.003217-0.02490.490101



Parameters (Session):
par1 = 36 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = MA ; par7 = 0.95 ;
Parameters (R input):
par1 = 36 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = MA ; par7 = 0.95 ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep=''))
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF')
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')