Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_smp.wasp
Title produced by softwareStandard Deviation-Mean Plot
Date of computationTue, 24 Nov 2009 12:05:24 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/24/t12590895641wf5kz504wxdcoq.htm/, Retrieved Fri, 14 Jun 2024 18:04:49 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=59233, Retrieved Fri, 14 Jun 2024 18:04:49 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact212
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Explorative Data Analysis] [Run Sequence gebo...] [2008-12-12 13:32:37] [76963dc1903f0f612b6153510a3818cf]
- R  D  [Univariate Explorative Data Analysis] [Run Sequence gebo...] [2008-12-17 12:14:40] [76963dc1903f0f612b6153510a3818cf]
-         [Univariate Explorative Data Analysis] [Run Sequence Plot...] [2008-12-22 18:19:51] [1ce0d16c8f4225c977b42c8fa93bc163]
- RMP       [Standard Deviation-Mean Plot] [Identifying Integ...] [2009-11-22 12:50:05] [b98453cac15ba1066b407e146608df68]
-    D          [Standard Deviation-Mean Plot] [SHWWS8hetero] [2009-11-24 19:05:24] [db49399df1e4a3dbe31268849cebfd7f] [Current]
-    D            [Standard Deviation-Mean Plot] [SHWPAPER] [2009-12-10 19:24:58] [a66d3a79ef9e5308cd94a469bc5ca464]
Feedback Forum

Post a new message
Dataseries X:
161
149
139
135
130
127
122
117
112
113
149
157
157
147
137
132
125
123
117
114
111
112
144
150
149
134
123
116
117
111
105
102
95
93
124
130
124
115
106
105
105
101
95
93
84
87
116
120
117
109
105
107
109
109
108
107
99
103
131
137




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59233&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59233&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59233&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
1134.2516.93906190383149
2130.7516.080055404698846
3116.58333333333316.599333685057356
4104.2512.884980685772440
5111.7511.290583365232838

\begin{tabular}{lllllllll}
\hline
Standard Deviation-Mean Plot \tabularnewline
Section & Mean & Standard Deviation & Range \tabularnewline
1 & 134.25 & 16.939061903831 & 49 \tabularnewline
2 & 130.75 & 16.0800554046988 & 46 \tabularnewline
3 & 116.583333333333 & 16.5993336850573 & 56 \tabularnewline
4 & 104.25 & 12.8849806857724 & 40 \tabularnewline
5 & 111.75 & 11.2905833652328 & 38 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59233&T=1

[TABLE]
[ROW][C]Standard Deviation-Mean Plot[/C][/ROW]
[ROW][C]Section[/C][C]Mean[/C][C]Standard Deviation[/C][C]Range[/C][/ROW]
[ROW][C]1[/C][C]134.25[/C][C]16.939061903831[/C][C]49[/C][/ROW]
[ROW][C]2[/C][C]130.75[/C][C]16.0800554046988[/C][C]46[/C][/ROW]
[ROW][C]3[/C][C]116.583333333333[/C][C]16.5993336850573[/C][C]56[/C][/ROW]
[ROW][C]4[/C][C]104.25[/C][C]12.8849806857724[/C][C]40[/C][/ROW]
[ROW][C]5[/C][C]111.75[/C][C]11.2905833652328[/C][C]38[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59233&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59233&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
1134.2516.93906190383149
2130.7516.080055404698846
3116.58333333333316.599333685057356
4104.2512.884980685772440
5111.7511.290583365232838







Regression: S.E.(k) = alpha + beta * Mean(k)
alpha-3.22812659590736
beta0.150497249517438
S.D.0.0747350184740625
T-STAT2.01374472891406
p-value0.137484659535018

\begin{tabular}{lllllllll}
\hline
Regression: S.E.(k) = alpha + beta * Mean(k) \tabularnewline
alpha & -3.22812659590736 \tabularnewline
beta & 0.150497249517438 \tabularnewline
S.D. & 0.0747350184740625 \tabularnewline
T-STAT & 2.01374472891406 \tabularnewline
p-value & 0.137484659535018 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59233&T=2

[TABLE]
[ROW][C]Regression: S.E.(k) = alpha + beta * Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]-3.22812659590736[/C][/ROW]
[ROW][C]beta[/C][C]0.150497249517438[/C][/ROW]
[ROW][C]S.D.[/C][C]0.0747350184740625[/C][/ROW]
[ROW][C]T-STAT[/C][C]2.01374472891406[/C][/ROW]
[ROW][C]p-value[/C][C]0.137484659535018[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59233&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59233&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: S.E.(k) = alpha + beta * Mean(k)
alpha-3.22812659590736
beta0.150497249517438
S.D.0.0747350184740625
T-STAT2.01374472891406
p-value0.137484659535018







Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha-3.3425987639155
beta1.26009737263073
S.D.0.651326350004182
T-STAT1.93466358703687
p-value0.148485873848970
Lambda-0.260097372630726

\begin{tabular}{lllllllll}
\hline
Regression: ln S.E.(k) = alpha + beta * ln Mean(k) \tabularnewline
alpha & -3.3425987639155 \tabularnewline
beta & 1.26009737263073 \tabularnewline
S.D. & 0.651326350004182 \tabularnewline
T-STAT & 1.93466358703687 \tabularnewline
p-value & 0.148485873848970 \tabularnewline
Lambda & -0.260097372630726 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59233&T=3

[TABLE]
[ROW][C]Regression: ln S.E.(k) = alpha + beta * ln Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]-3.3425987639155[/C][/ROW]
[ROW][C]beta[/C][C]1.26009737263073[/C][/ROW]
[ROW][C]S.D.[/C][C]0.651326350004182[/C][/ROW]
[ROW][C]T-STAT[/C][C]1.93466358703687[/C][/ROW]
[ROW][C]p-value[/C][C]0.148485873848970[/C][/ROW]
[ROW][C]Lambda[/C][C]-0.260097372630726[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59233&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59233&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha-3.3425987639155
beta1.26009737263073
S.D.0.651326350004182
T-STAT1.93466358703687
p-value0.148485873848970
Lambda-0.260097372630726



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
(n <- length(x))
(np <- floor(n / par1))
arr <- array(NA,dim=c(par1,np))
j <- 0
k <- 1
for (i in 1:(np*par1))
{
j = j + 1
arr[j,k] <- x[i]
if (j == par1) {
j = 0
k=k+1
}
}
arr
arr.mean <- array(NA,dim=np)
arr.sd <- array(NA,dim=np)
arr.range <- array(NA,dim=np)
for (j in 1:np)
{
arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE)
}
arr.mean
arr.sd
arr.range
(lm1 <- lm(arr.sd~arr.mean))
(lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
(lm2 <- lm(arr.range~arr.mean))
bitmap(file='test1.png')
plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
dev.off()
bitmap(file='test2.png')
plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Section',header=TRUE)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,'Standard Deviation',header=TRUE)
a<-table.element(a,'Range',header=TRUE)
a<-table.row.end(a)
for (j in 1:np) {
a<-table.row.start(a)
a<-table.element(a,j,header=TRUE)
a<-table.element(a,arr.mean[j])
a<-table.element(a,arr.sd[j] )
a<-table.element(a,arr.range[j] )
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lambda',header=TRUE)
a<-table.element(a,1-lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')