Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationTue, 24 Nov 2009 12:34:58 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/24/t1259091352fc1qceidj6v5iqi.htm/, Retrieved Thu, 12 Sep 2024 16:11:33 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=59249, Retrieved Thu, 12 Sep 2024 16:11:33 +0000
QR Codes:

Original text written by user:WS 8 Identifying Integration Processes
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact202
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Explorative Data Analysis] [Run Sequence gebo...] [2008-12-12 13:32:37] [76963dc1903f0f612b6153510a3818cf]
- R  D  [Univariate Explorative Data Analysis] [Run Sequence gebo...] [2008-12-17 12:14:40] [76963dc1903f0f612b6153510a3818cf]
-         [Univariate Explorative Data Analysis] [Run Sequence Plot...] [2008-12-22 18:19:51] [1ce0d16c8f4225c977b42c8fa93bc163]
- RMP       [(Partial) Autocorrelation Function] [Identifying Integ...] [2009-11-22 12:16:10] [b98453cac15ba1066b407e146608df68]
-    D        [(Partial) Autocorrelation Function] [WS 8 Identifying ...] [2009-11-24 19:14:07] [101f710c1bf3d900563184d79f7da6e1]
-   PD          [(Partial) Autocorrelation Function] [WS 8 Identifying ...] [2009-11-24 19:25:42] [101f710c1bf3d900563184d79f7da6e1]
-   P               [(Partial) Autocorrelation Function] [WS 8 Identifying ...] [2009-11-24 19:34:58] [9b6f46453e60f88d91cef176fe926003] [Current]
-   P                 [(Partial) Autocorrelation Function] [WS 9 Estimation o...] [2009-12-02 21:09:56] [101f710c1bf3d900563184d79f7da6e1]
Feedback Forum

Post a new message
Dataseries X:
14.5
14.3
15.3
14.4
13.7
14.2
13.5
11.9
14.6
15.6
14.1
14.9
14.2
14.6
17.2
15.4
14.3
17.5
14.5
14.4
16.6
16.7
16.6
16.9
15.7
16.4
18.4
16.9
16.5
18.3
15.1
15.7
18.1
16.8
18.9
19
18.1
17.8
21.5
17.1
18.7
19
16.4
16.9
18.6
19.3
19.4
17.6
18.6
18.1
20.4
18.1
19.6
19.9
19.2
17.8
19.2
22
21.1
19.5
22.2
20.9
22.2
23.5
21.5
24.3
22.8
20.3
23.7
23.3
19.6
18
17.3
16.8
18.2
16.5
16
18.4




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59249&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59249&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59249&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.49091-3.95789.5e-05
20.0467480.37690.353739
30.4051183.26620.000871
4-0.339655-2.73840.003979
50.101690.81990.207648
60.2324921.87440.032684
7-0.378405-3.05080.001651
80.2247691.81210.037291
90.0437870.3530.362608
10-0.245842-1.9820.025853
110.2220331.79010.039049
12-0.120575-0.97210.167301
13-0.142678-1.15030.127116
140.1871961.50920.068044
15-0.06159-0.49660.31059
16-0.163193-1.31570.096448
170.2059291.66030.05084
18-0.117582-0.9480.173326
19-0.090606-0.73050.233858
200.1536871.23910.109889
21-0.096185-0.77550.220437
22-0.112996-0.9110.182829
230.3011812.42820.008975
24-0.289965-2.33780.011244
250.1481231.19420.118368
260.0701430.56550.286836
27-0.165111-1.33120.093892
280.0902640.72770.234697
290.0914960.73770.231686
30-0.190364-1.53480.064848
310.1547761.24780.108283
32-0.007932-0.06390.474604
33-0.07239-0.58360.280744
340.0399060.32170.374344
350.0111020.08950.464478
36-0.067925-0.54760.29291

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.49091 & -3.9578 & 9.5e-05 \tabularnewline
2 & 0.046748 & 0.3769 & 0.353739 \tabularnewline
3 & 0.405118 & 3.2662 & 0.000871 \tabularnewline
4 & -0.339655 & -2.7384 & 0.003979 \tabularnewline
5 & 0.10169 & 0.8199 & 0.207648 \tabularnewline
6 & 0.232492 & 1.8744 & 0.032684 \tabularnewline
7 & -0.378405 & -3.0508 & 0.001651 \tabularnewline
8 & 0.224769 & 1.8121 & 0.037291 \tabularnewline
9 & 0.043787 & 0.353 & 0.362608 \tabularnewline
10 & -0.245842 & -1.982 & 0.025853 \tabularnewline
11 & 0.222033 & 1.7901 & 0.039049 \tabularnewline
12 & -0.120575 & -0.9721 & 0.167301 \tabularnewline
13 & -0.142678 & -1.1503 & 0.127116 \tabularnewline
14 & 0.187196 & 1.5092 & 0.068044 \tabularnewline
15 & -0.06159 & -0.4966 & 0.31059 \tabularnewline
16 & -0.163193 & -1.3157 & 0.096448 \tabularnewline
17 & 0.205929 & 1.6603 & 0.05084 \tabularnewline
18 & -0.117582 & -0.948 & 0.173326 \tabularnewline
19 & -0.090606 & -0.7305 & 0.233858 \tabularnewline
20 & 0.153687 & 1.2391 & 0.109889 \tabularnewline
21 & -0.096185 & -0.7755 & 0.220437 \tabularnewline
22 & -0.112996 & -0.911 & 0.182829 \tabularnewline
23 & 0.301181 & 2.4282 & 0.008975 \tabularnewline
24 & -0.289965 & -2.3378 & 0.011244 \tabularnewline
25 & 0.148123 & 1.1942 & 0.118368 \tabularnewline
26 & 0.070143 & 0.5655 & 0.286836 \tabularnewline
27 & -0.165111 & -1.3312 & 0.093892 \tabularnewline
28 & 0.090264 & 0.7277 & 0.234697 \tabularnewline
29 & 0.091496 & 0.7377 & 0.231686 \tabularnewline
30 & -0.190364 & -1.5348 & 0.064848 \tabularnewline
31 & 0.154776 & 1.2478 & 0.108283 \tabularnewline
32 & -0.007932 & -0.0639 & 0.474604 \tabularnewline
33 & -0.07239 & -0.5836 & 0.280744 \tabularnewline
34 & 0.039906 & 0.3217 & 0.374344 \tabularnewline
35 & 0.011102 & 0.0895 & 0.464478 \tabularnewline
36 & -0.067925 & -0.5476 & 0.29291 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59249&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.49091[/C][C]-3.9578[/C][C]9.5e-05[/C][/ROW]
[ROW][C]2[/C][C]0.046748[/C][C]0.3769[/C][C]0.353739[/C][/ROW]
[ROW][C]3[/C][C]0.405118[/C][C]3.2662[/C][C]0.000871[/C][/ROW]
[ROW][C]4[/C][C]-0.339655[/C][C]-2.7384[/C][C]0.003979[/C][/ROW]
[ROW][C]5[/C][C]0.10169[/C][C]0.8199[/C][C]0.207648[/C][/ROW]
[ROW][C]6[/C][C]0.232492[/C][C]1.8744[/C][C]0.032684[/C][/ROW]
[ROW][C]7[/C][C]-0.378405[/C][C]-3.0508[/C][C]0.001651[/C][/ROW]
[ROW][C]8[/C][C]0.224769[/C][C]1.8121[/C][C]0.037291[/C][/ROW]
[ROW][C]9[/C][C]0.043787[/C][C]0.353[/C][C]0.362608[/C][/ROW]
[ROW][C]10[/C][C]-0.245842[/C][C]-1.982[/C][C]0.025853[/C][/ROW]
[ROW][C]11[/C][C]0.222033[/C][C]1.7901[/C][C]0.039049[/C][/ROW]
[ROW][C]12[/C][C]-0.120575[/C][C]-0.9721[/C][C]0.167301[/C][/ROW]
[ROW][C]13[/C][C]-0.142678[/C][C]-1.1503[/C][C]0.127116[/C][/ROW]
[ROW][C]14[/C][C]0.187196[/C][C]1.5092[/C][C]0.068044[/C][/ROW]
[ROW][C]15[/C][C]-0.06159[/C][C]-0.4966[/C][C]0.31059[/C][/ROW]
[ROW][C]16[/C][C]-0.163193[/C][C]-1.3157[/C][C]0.096448[/C][/ROW]
[ROW][C]17[/C][C]0.205929[/C][C]1.6603[/C][C]0.05084[/C][/ROW]
[ROW][C]18[/C][C]-0.117582[/C][C]-0.948[/C][C]0.173326[/C][/ROW]
[ROW][C]19[/C][C]-0.090606[/C][C]-0.7305[/C][C]0.233858[/C][/ROW]
[ROW][C]20[/C][C]0.153687[/C][C]1.2391[/C][C]0.109889[/C][/ROW]
[ROW][C]21[/C][C]-0.096185[/C][C]-0.7755[/C][C]0.220437[/C][/ROW]
[ROW][C]22[/C][C]-0.112996[/C][C]-0.911[/C][C]0.182829[/C][/ROW]
[ROW][C]23[/C][C]0.301181[/C][C]2.4282[/C][C]0.008975[/C][/ROW]
[ROW][C]24[/C][C]-0.289965[/C][C]-2.3378[/C][C]0.011244[/C][/ROW]
[ROW][C]25[/C][C]0.148123[/C][C]1.1942[/C][C]0.118368[/C][/ROW]
[ROW][C]26[/C][C]0.070143[/C][C]0.5655[/C][C]0.286836[/C][/ROW]
[ROW][C]27[/C][C]-0.165111[/C][C]-1.3312[/C][C]0.093892[/C][/ROW]
[ROW][C]28[/C][C]0.090264[/C][C]0.7277[/C][C]0.234697[/C][/ROW]
[ROW][C]29[/C][C]0.091496[/C][C]0.7377[/C][C]0.231686[/C][/ROW]
[ROW][C]30[/C][C]-0.190364[/C][C]-1.5348[/C][C]0.064848[/C][/ROW]
[ROW][C]31[/C][C]0.154776[/C][C]1.2478[/C][C]0.108283[/C][/ROW]
[ROW][C]32[/C][C]-0.007932[/C][C]-0.0639[/C][C]0.474604[/C][/ROW]
[ROW][C]33[/C][C]-0.07239[/C][C]-0.5836[/C][C]0.280744[/C][/ROW]
[ROW][C]34[/C][C]0.039906[/C][C]0.3217[/C][C]0.374344[/C][/ROW]
[ROW][C]35[/C][C]0.011102[/C][C]0.0895[/C][C]0.464478[/C][/ROW]
[ROW][C]36[/C][C]-0.067925[/C][C]-0.5476[/C][C]0.29291[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59249&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59249&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.49091-3.95789.5e-05
20.0467480.37690.353739
30.4051183.26620.000871
4-0.339655-2.73840.003979
50.101690.81990.207648
60.2324921.87440.032684
7-0.378405-3.05080.001651
80.2247691.81210.037291
90.0437870.3530.362608
10-0.245842-1.9820.025853
110.2220331.79010.039049
12-0.120575-0.97210.167301
13-0.142678-1.15030.127116
140.1871961.50920.068044
15-0.06159-0.49660.31059
16-0.163193-1.31570.096448
170.2059291.66030.05084
18-0.117582-0.9480.173326
19-0.090606-0.73050.233858
200.1536871.23910.109889
21-0.096185-0.77550.220437
22-0.112996-0.9110.182829
230.3011812.42820.008975
24-0.289965-2.33780.011244
250.1481231.19420.118368
260.0701430.56550.286836
27-0.165111-1.33120.093892
280.0902640.72770.234697
290.0914960.73770.231686
30-0.190364-1.53480.064848
310.1547761.24780.108283
32-0.007932-0.06390.474604
33-0.07239-0.58360.280744
340.0399060.32170.374344
350.0111020.08950.464478
36-0.067925-0.54760.29291







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.49091-3.95789.5e-05
2-0.255919-2.06330.021542
30.4346663.50440.000417
40.1353591.09130.139585
5-0.090694-0.73120.233643
60.0982170.79180.215665
7-0.152539-1.22980.1116
8-0.084485-0.68110.249102
90.0393080.31690.376164
100.0128790.10380.458809
110.0057140.04610.481699
12-0.114478-0.9230.179722
13-0.155611-1.25460.107063
14-0.069021-0.55650.289901
150.2000531.61290.055808
16-0.007651-0.06170.475502
17-0.071944-0.580.281951
18-0.019066-0.15370.439155
19-0.105557-0.8510.19894
20-0.089594-0.72230.236341
210.0896110.72250.2363
22-0.035353-0.2850.388265
230.1774461.43060.078665
24-0.078671-0.63430.264067
250.0168480.13580.446187
26-0.068077-0.54890.292493
270.0491590.39630.346578
28-0.063803-0.51440.30436
290.0284010.2290.409802
300.0530450.42770.335156
31-0.042104-0.33950.36768
32-0.053137-0.42840.334887
330.0965330.77830.219616
34-0.120448-0.97110.167554
35-0.016085-0.12970.448611
360.0145040.11690.453637

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.49091 & -3.9578 & 9.5e-05 \tabularnewline
2 & -0.255919 & -2.0633 & 0.021542 \tabularnewline
3 & 0.434666 & 3.5044 & 0.000417 \tabularnewline
4 & 0.135359 & 1.0913 & 0.139585 \tabularnewline
5 & -0.090694 & -0.7312 & 0.233643 \tabularnewline
6 & 0.098217 & 0.7918 & 0.215665 \tabularnewline
7 & -0.152539 & -1.2298 & 0.1116 \tabularnewline
8 & -0.084485 & -0.6811 & 0.249102 \tabularnewline
9 & 0.039308 & 0.3169 & 0.376164 \tabularnewline
10 & 0.012879 & 0.1038 & 0.458809 \tabularnewline
11 & 0.005714 & 0.0461 & 0.481699 \tabularnewline
12 & -0.114478 & -0.923 & 0.179722 \tabularnewline
13 & -0.155611 & -1.2546 & 0.107063 \tabularnewline
14 & -0.069021 & -0.5565 & 0.289901 \tabularnewline
15 & 0.200053 & 1.6129 & 0.055808 \tabularnewline
16 & -0.007651 & -0.0617 & 0.475502 \tabularnewline
17 & -0.071944 & -0.58 & 0.281951 \tabularnewline
18 & -0.019066 & -0.1537 & 0.439155 \tabularnewline
19 & -0.105557 & -0.851 & 0.19894 \tabularnewline
20 & -0.089594 & -0.7223 & 0.236341 \tabularnewline
21 & 0.089611 & 0.7225 & 0.2363 \tabularnewline
22 & -0.035353 & -0.285 & 0.388265 \tabularnewline
23 & 0.177446 & 1.4306 & 0.078665 \tabularnewline
24 & -0.078671 & -0.6343 & 0.264067 \tabularnewline
25 & 0.016848 & 0.1358 & 0.446187 \tabularnewline
26 & -0.068077 & -0.5489 & 0.292493 \tabularnewline
27 & 0.049159 & 0.3963 & 0.346578 \tabularnewline
28 & -0.063803 & -0.5144 & 0.30436 \tabularnewline
29 & 0.028401 & 0.229 & 0.409802 \tabularnewline
30 & 0.053045 & 0.4277 & 0.335156 \tabularnewline
31 & -0.042104 & -0.3395 & 0.36768 \tabularnewline
32 & -0.053137 & -0.4284 & 0.334887 \tabularnewline
33 & 0.096533 & 0.7783 & 0.219616 \tabularnewline
34 & -0.120448 & -0.9711 & 0.167554 \tabularnewline
35 & -0.016085 & -0.1297 & 0.448611 \tabularnewline
36 & 0.014504 & 0.1169 & 0.453637 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59249&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.49091[/C][C]-3.9578[/C][C]9.5e-05[/C][/ROW]
[ROW][C]2[/C][C]-0.255919[/C][C]-2.0633[/C][C]0.021542[/C][/ROW]
[ROW][C]3[/C][C]0.434666[/C][C]3.5044[/C][C]0.000417[/C][/ROW]
[ROW][C]4[/C][C]0.135359[/C][C]1.0913[/C][C]0.139585[/C][/ROW]
[ROW][C]5[/C][C]-0.090694[/C][C]-0.7312[/C][C]0.233643[/C][/ROW]
[ROW][C]6[/C][C]0.098217[/C][C]0.7918[/C][C]0.215665[/C][/ROW]
[ROW][C]7[/C][C]-0.152539[/C][C]-1.2298[/C][C]0.1116[/C][/ROW]
[ROW][C]8[/C][C]-0.084485[/C][C]-0.6811[/C][C]0.249102[/C][/ROW]
[ROW][C]9[/C][C]0.039308[/C][C]0.3169[/C][C]0.376164[/C][/ROW]
[ROW][C]10[/C][C]0.012879[/C][C]0.1038[/C][C]0.458809[/C][/ROW]
[ROW][C]11[/C][C]0.005714[/C][C]0.0461[/C][C]0.481699[/C][/ROW]
[ROW][C]12[/C][C]-0.114478[/C][C]-0.923[/C][C]0.179722[/C][/ROW]
[ROW][C]13[/C][C]-0.155611[/C][C]-1.2546[/C][C]0.107063[/C][/ROW]
[ROW][C]14[/C][C]-0.069021[/C][C]-0.5565[/C][C]0.289901[/C][/ROW]
[ROW][C]15[/C][C]0.200053[/C][C]1.6129[/C][C]0.055808[/C][/ROW]
[ROW][C]16[/C][C]-0.007651[/C][C]-0.0617[/C][C]0.475502[/C][/ROW]
[ROW][C]17[/C][C]-0.071944[/C][C]-0.58[/C][C]0.281951[/C][/ROW]
[ROW][C]18[/C][C]-0.019066[/C][C]-0.1537[/C][C]0.439155[/C][/ROW]
[ROW][C]19[/C][C]-0.105557[/C][C]-0.851[/C][C]0.19894[/C][/ROW]
[ROW][C]20[/C][C]-0.089594[/C][C]-0.7223[/C][C]0.236341[/C][/ROW]
[ROW][C]21[/C][C]0.089611[/C][C]0.7225[/C][C]0.2363[/C][/ROW]
[ROW][C]22[/C][C]-0.035353[/C][C]-0.285[/C][C]0.388265[/C][/ROW]
[ROW][C]23[/C][C]0.177446[/C][C]1.4306[/C][C]0.078665[/C][/ROW]
[ROW][C]24[/C][C]-0.078671[/C][C]-0.6343[/C][C]0.264067[/C][/ROW]
[ROW][C]25[/C][C]0.016848[/C][C]0.1358[/C][C]0.446187[/C][/ROW]
[ROW][C]26[/C][C]-0.068077[/C][C]-0.5489[/C][C]0.292493[/C][/ROW]
[ROW][C]27[/C][C]0.049159[/C][C]0.3963[/C][C]0.346578[/C][/ROW]
[ROW][C]28[/C][C]-0.063803[/C][C]-0.5144[/C][C]0.30436[/C][/ROW]
[ROW][C]29[/C][C]0.028401[/C][C]0.229[/C][C]0.409802[/C][/ROW]
[ROW][C]30[/C][C]0.053045[/C][C]0.4277[/C][C]0.335156[/C][/ROW]
[ROW][C]31[/C][C]-0.042104[/C][C]-0.3395[/C][C]0.36768[/C][/ROW]
[ROW][C]32[/C][C]-0.053137[/C][C]-0.4284[/C][C]0.334887[/C][/ROW]
[ROW][C]33[/C][C]0.096533[/C][C]0.7783[/C][C]0.219616[/C][/ROW]
[ROW][C]34[/C][C]-0.120448[/C][C]-0.9711[/C][C]0.167554[/C][/ROW]
[ROW][C]35[/C][C]-0.016085[/C][C]-0.1297[/C][C]0.448611[/C][/ROW]
[ROW][C]36[/C][C]0.014504[/C][C]0.1169[/C][C]0.453637[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59249&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59249&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.49091-3.95789.5e-05
2-0.255919-2.06330.021542
30.4346663.50440.000417
40.1353591.09130.139585
5-0.090694-0.73120.233643
60.0982170.79180.215665
7-0.152539-1.22980.1116
8-0.084485-0.68110.249102
90.0393080.31690.376164
100.0128790.10380.458809
110.0057140.04610.481699
12-0.114478-0.9230.179722
13-0.155611-1.25460.107063
14-0.069021-0.55650.289901
150.2000531.61290.055808
16-0.007651-0.06170.475502
17-0.071944-0.580.281951
18-0.019066-0.15370.439155
19-0.105557-0.8510.19894
20-0.089594-0.72230.236341
210.0896110.72250.2363
22-0.035353-0.2850.388265
230.1774461.43060.078665
24-0.078671-0.63430.264067
250.0168480.13580.446187
26-0.068077-0.54890.292493
270.0491590.39630.346578
28-0.063803-0.51440.30436
290.0284010.2290.409802
300.0530450.42770.335156
31-0.042104-0.33950.36768
32-0.053137-0.42840.334887
330.0965330.77830.219616
34-0.120448-0.97110.167554
35-0.016085-0.12970.448611
360.0145040.11690.453637



Parameters (Session):
par1 = 36 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = MA ; par7 = 0.95 ;
Parameters (R input):
par1 = 36 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = MA ; par7 = 0.95 ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep=''))
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF')
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')