Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_smp.wasp
Title produced by softwareStandard Deviation-Mean Plot
Date of computationTue, 24 Nov 2009 14:09:37 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/24/t12590970223qcim4tbfykfm7n.htm/, Retrieved Wed, 11 Sep 2024 06:01:09 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=59290, Retrieved Wed, 11 Sep 2024 06:01:09 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact199
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Explorative Data Analysis] [Run Sequence gebo...] [2008-12-12 13:32:37] [76963dc1903f0f612b6153510a3818cf]
- R  D  [Univariate Explorative Data Analysis] [Run Sequence gebo...] [2008-12-17 12:14:40] [76963dc1903f0f612b6153510a3818cf]
-         [Univariate Explorative Data Analysis] [Run Sequence Plot...] [2008-12-22 18:19:51] [1ce0d16c8f4225c977b42c8fa93bc163]
- RMP       [Standard Deviation-Mean Plot] [Identifying Integ...] [2009-11-22 12:50:05] [b98453cac15ba1066b407e146608df68]
-   PD          [Standard Deviation-Mean Plot] [] [2009-11-24 21:09:37] [fc845972e0ebdb725d2fb9537c0c51aa] [Current]
Feedback Forum

Post a new message
Dataseries X:
111,4
87,4
96,8
114,1
110,3
103,9
101,6
94,6
95,9
104,7
102,8
98,1
113,9
80,9
95,7
113,2
105,9
108,8
102,3
99
100,7
115,5
100,7
109,9
114,6
85,4
100,5
114,8
116,5
112,9
102
106
105,3
118,8
106,1
109,3
117,2
92,5
104,2
112,5
122,4
113,3
100
110,7
112,8
109,8
117,3
109,1
115,9
96
99,8
116,8
115,7
99,4
94,3
91
93,2
103,1
94,1
91,8
102,7




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59290&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59290&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59290&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
1101.87.7592173925889326.7
2103.8759.6687993990040934.6
3107.6833333333339.1507409867212733.4
4110.158.1174895357885429.9
5100.9259.812156189691925.8

\begin{tabular}{lllllllll}
\hline
Standard Deviation-Mean Plot \tabularnewline
Section & Mean & Standard Deviation & Range \tabularnewline
1 & 101.8 & 7.75921739258893 & 26.7 \tabularnewline
2 & 103.875 & 9.66879939900409 & 34.6 \tabularnewline
3 & 107.683333333333 & 9.15074098672127 & 33.4 \tabularnewline
4 & 110.15 & 8.11748953578854 & 29.9 \tabularnewline
5 & 100.925 & 9.8121561896919 & 25.8 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59290&T=1

[TABLE]
[ROW][C]Standard Deviation-Mean Plot[/C][/ROW]
[ROW][C]Section[/C][C]Mean[/C][C]Standard Deviation[/C][C]Range[/C][/ROW]
[ROW][C]1[/C][C]101.8[/C][C]7.75921739258893[/C][C]26.7[/C][/ROW]
[ROW][C]2[/C][C]103.875[/C][C]9.66879939900409[/C][C]34.6[/C][/ROW]
[ROW][C]3[/C][C]107.683333333333[/C][C]9.15074098672127[/C][C]33.4[/C][/ROW]
[ROW][C]4[/C][C]110.15[/C][C]8.11748953578854[/C][C]29.9[/C][/ROW]
[ROW][C]5[/C][C]100.925[/C][C]9.8121561896919[/C][C]25.8[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59290&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59290&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
1101.87.7592173925889326.7
2103.8759.6687993990040934.6
3107.6833333333339.1507409867212733.4
4110.158.1174895357885429.9
5100.9259.812156189691925.8







Regression: S.E.(k) = alpha + beta * Mean(k)
alpha16.1821089117308
beta-0.0694123327811461
S.D.0.129382212031009
T-STAT-0.536490539862698
p-value0.628851547353003

\begin{tabular}{lllllllll}
\hline
Regression: S.E.(k) = alpha + beta * Mean(k) \tabularnewline
alpha & 16.1821089117308 \tabularnewline
beta & -0.0694123327811461 \tabularnewline
S.D. & 0.129382212031009 \tabularnewline
T-STAT & -0.536490539862698 \tabularnewline
p-value & 0.628851547353003 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59290&T=2

[TABLE]
[ROW][C]Regression: S.E.(k) = alpha + beta * Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]16.1821089117308[/C][/ROW]
[ROW][C]beta[/C][C]-0.0694123327811461[/C][/ROW]
[ROW][C]S.D.[/C][C]0.129382212031009[/C][/ROW]
[ROW][C]T-STAT[/C][C]-0.536490539862698[/C][/ROW]
[ROW][C]p-value[/C][C]0.628851547353003[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59290&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59290&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: S.E.(k) = alpha + beta * Mean(k)
alpha16.1821089117308
beta-0.0694123327811461
S.D.0.129382212031009
T-STAT-0.536490539862698
p-value0.628851547353003







Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha5.7392921166944
beta-0.764658771529405
S.D.1.57024965825964
T-STAT-0.48696636710426
p-value0.659644319238726
Lambda1.76465877152940

\begin{tabular}{lllllllll}
\hline
Regression: ln S.E.(k) = alpha + beta * ln Mean(k) \tabularnewline
alpha & 5.7392921166944 \tabularnewline
beta & -0.764658771529405 \tabularnewline
S.D. & 1.57024965825964 \tabularnewline
T-STAT & -0.48696636710426 \tabularnewline
p-value & 0.659644319238726 \tabularnewline
Lambda & 1.76465877152940 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=59290&T=3

[TABLE]
[ROW][C]Regression: ln S.E.(k) = alpha + beta * ln Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]5.7392921166944[/C][/ROW]
[ROW][C]beta[/C][C]-0.764658771529405[/C][/ROW]
[ROW][C]S.D.[/C][C]1.57024965825964[/C][/ROW]
[ROW][C]T-STAT[/C][C]-0.48696636710426[/C][/ROW]
[ROW][C]p-value[/C][C]0.659644319238726[/C][/ROW]
[ROW][C]Lambda[/C][C]1.76465877152940[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=59290&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=59290&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha5.7392921166944
beta-0.764658771529405
S.D.1.57024965825964
T-STAT-0.48696636710426
p-value0.659644319238726
Lambda1.76465877152940



Parameters (Session):
par1 = 1 ; par2 = 1 ; par3 = 1 ; par4 = 12 ;
Parameters (R input):
par1 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
(n <- length(x))
(np <- floor(n / par1))
arr <- array(NA,dim=c(par1,np))
j <- 0
k <- 1
for (i in 1:(np*par1))
{
j = j + 1
arr[j,k] <- x[i]
if (j == par1) {
j = 0
k=k+1
}
}
arr
arr.mean <- array(NA,dim=np)
arr.sd <- array(NA,dim=np)
arr.range <- array(NA,dim=np)
for (j in 1:np)
{
arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE)
}
arr.mean
arr.sd
arr.range
(lm1 <- lm(arr.sd~arr.mean))
(lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
(lm2 <- lm(arr.range~arr.mean))
bitmap(file='test1.png')
plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
dev.off()
bitmap(file='test2.png')
plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Section',header=TRUE)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,'Standard Deviation',header=TRUE)
a<-table.element(a,'Range',header=TRUE)
a<-table.row.end(a)
for (j in 1:np) {
a<-table.row.start(a)
a<-table.element(a,j,header=TRUE)
a<-table.element(a,arr.mean[j])
a<-table.element(a,arr.sd[j] )
a<-table.element(a,arr.range[j] )
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lambda',header=TRUE)
a<-table.element(a,1-lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')