Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software ModuleIan.Hollidayrwasp_Two Factor ANOVA -V2.wasp
Title produced by softwareVariability
Date of computationWed, 01 Sep 2010 13:22:20 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Sep/01/t1283347325erfwlwmotnci541.htm/, Retrieved Tue, 21 Mar 2023 07:58:11 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=79496, Retrieved Tue, 21 Mar 2023 07:58:11 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact180
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Two-Way ANOVA] [two-way anova wit...] [2010-05-26 17:02:24] [98fd0e87c3eb04e0cc2efde01dbafab6]
- R PD  [Two-Way ANOVA] [ANOVA with good l...] [2010-05-28 23:09:47] [98fd0e87c3eb04e0cc2efde01dbafab6]
- R       [Variability] [ANOVA with better...] [2010-05-29 09:47:12] [98fd0e87c3eb04e0cc2efde01dbafab6]
- R         [Variability] [ANOVA with better...] [2010-05-29 09:54:40] [98fd0e87c3eb04e0cc2efde01dbafab6]
- R  D          [Variability] [miss] [2010-09-01 13:22:20] [81dc9a410449f1cc5f63ddb979ff6e80] [Current]
Feedback Forum

Post a new message
Dataseries X:
'GOOD'	'HIGH'	25
'GOOD'	'HIGH'	0
'GOOD'	'HIGH'	-16
'GOOD'	'HIGH'	5
'GOOD'	'HIGH'	11
'GOOD'	'HIGH'	-6
'GOOD'	'HIGH'	-2
'GOOD'	'HIGH'	-13
'GOOD'	'HIGH'	14
'GOOD'	'HIGH'	4
'GOOD'	'HIGH'	-22
'GOOD'	'HIGH'	19
'GOOD'	'HIGH'	6
'GOOD'	'HIGH'	-6
'GOOD'	'LOW'	-25
'GOOD'	'LOW'	-23
'GOOD'	'LOW'	-28
'GOOD'	'LOW'	-22
'GOOD'	'LOW'	-22
'GOOD'	'LOW'	-10
'GOOD'	'LOW'	-20
'GOOD'	'LOW'	-24
'GOOD'	'LOW'	-24
'GOOD'	'LOW'	-22
'GOOD'	'LOW'	-23
'GOOD'	'LOW'	-19
'GOOD'	'LOW'	-2
'GOOD'	'LOW'	12
'GOOD'	'LOW'	-8
'GOOD'	'LOW'	-17
'GOOD'	'LOW'	-30
'SCIENTIFIC'	'HIGH'	-19
'SCIENTIFIC'	'HIGH'	-24
'SCIENTIFIC'	'HIGH'	-4
'SCIENTIFIC'	'HIGH'	-24
'SCIENTIFIC'	'HIGH'	0
'SCIENTIFIC'	'HIGH'	-4
'SCIENTIFIC'	'HIGH'	5
'SCIENTIFIC'	'HIGH'	-1
'SCIENTIFIC'	'HIGH'	-9
'SCIENTIFIC'	'HIGH'	-5
'SCIENTIFIC'	'HIGH'	-6
'SCIENTIFIC'	'HIGH'	4
'SCIENTIFIC'	'HIGH'	-13
'SCIENTIFIC'	'HIGH'	-1
'SCIENTIFIC'	'HIGH'	-3
'SCIENTIFIC'	'HIGH'	-11
'SCIENTIFIC'	'HIGH'	-6
'SCIENTIFIC'	'HIGH'	-4
'SCIENTIFIC'	'LOW'	6
'SCIENTIFIC'	'LOW'	-5
'SCIENTIFIC'	'LOW'	14
'SCIENTIFIC'	'LOW'	-11
'SCIENTIFIC'	'LOW'	14
'SCIENTIFIC'	'LOW'	-5
'SCIENTIFIC'	'LOW'	-22
'SCIENTIFIC'	'LOW'	7
'SCIENTIFIC'	'LOW'	14
'SCIENTIFIC'	'LOW'	15
'SCIENTIFIC'	'LOW'	-6
'SCIENTIFIC'	'LOW'	9
'SCIENTIFIC'	'LOW'	-5
'NONE'	'HIGH'	-26
'NONE'	'HIGH'	-1
'NONE'	'HIGH'	22
'NONE'	'HIGH'	3
'NONE'	'HIGH'	-26
'NONE'	'HIGH'	4
'NONE'	'HIGH'	-21
'NONE'	'HIGH'	-19
'NONE'	'HIGH'	-12
'NONE'	'HIGH'	9
'NONE'	'HIGH'	-9
'NONE'	'HIGH'	-27
'NONE'	'HIGH'	-10
'NONE'	'HIGH'	-37
'NONE'	'HIGH'	0
'NONE'	'HIGH'	-10
'NONE'	'LOW'	-12
'NONE'	'LOW'	-4
'NONE'	'LOW'	13
'NONE'	'LOW'	-27
'NONE'	'LOW'	-7
'NONE'	'LOW'	-20
'NONE'	'LOW'	-4
'NONE'	'LOW'	-10
'NONE'	'LOW'	-3
'NONE'	'LOW'	-11
'NONE'	'LOW'	2
'NONE'	'LOW'	-9
'NONE'	'LOW'	20
'NONE'	'LOW'	9
'NONE'	'LOW'	-8
'NONE'	'LOW'	8
'NONE'	'LOW'	-6
'NONE'	'LOW'	6




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=79496&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=79496&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=79496&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







ANOVA Model
R ~ Exp * Inst
names(Intercept)ExpLOWInstNONEInstSCIENTIFICExpLOW:InstNONEExpLOW:InstSCIENTIFIC
means1.357-19.416-11.357-8.30225.91628.283

\begin{tabular}{lllllllll}
\hline
ANOVA Model \tabularnewline
R ~ Exp * Inst \tabularnewline
names & (Intercept) & ExpLOW & InstNONE & InstSCIENTIFIC & ExpLOW:InstNONE & ExpLOW:InstSCIENTIFIC \tabularnewline
means & 1.357 & -19.416 & -11.357 & -8.302 & 25.916 & 28.283 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=79496&T=1

[TABLE]
[ROW][C]ANOVA Model[/C][/ROW]
[ROW][C]R ~ Exp * Inst[/C][/ROW]
[ROW][C]names[/C][C](Intercept)[/C][C]ExpLOW[/C][C]InstNONE[/C][C]InstSCIENTIFIC[/C][C]ExpLOW:InstNONE[/C][C]ExpLOW:InstSCIENTIFIC[/C][/ROW]
[ROW][C]means[/C][C]1.357[/C][C]-19.416[/C][C]-11.357[/C][C]-8.302[/C][C]25.916[/C][C]28.283[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=79496&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=79496&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Model
R ~ Exp * Inst
names(Intercept)ExpLOWInstNONEInstSCIENTIFICExpLOW:InstNONEExpLOW:InstSCIENTIFIC
means1.357-19.416-11.357-8.30225.91628.283







ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
1
Exp165.0165.010.4520.503
Inst1537.965268.9821.8690.16
Exp:Inst13814.7411907.37113.2510
Residuals9012954.523143.939

\begin{tabular}{lllllllll}
\hline
ANOVA Statistics \tabularnewline
  & Df & Sum Sq & Mean Sq & F value & Pr(>F) \tabularnewline
 & 1 &  &  &  &  \tabularnewline
Exp & 1 & 65.01 & 65.01 & 0.452 & 0.503 \tabularnewline
Inst & 1 & 537.965 & 268.982 & 1.869 & 0.16 \tabularnewline
Exp:Inst & 1 & 3814.741 & 1907.371 & 13.251 & 0 \tabularnewline
Residuals & 90 & 12954.523 & 143.939 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=79496&T=2

[TABLE]
[ROW][C]ANOVA Statistics[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]Sum Sq[/C][C]Mean Sq[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C][/C][C]1[/C][C][/C][C][/C][C][/C][C][/C][/ROW]
[ROW][C]Exp[/C][C]1[/C][C]65.01[/C][C]65.01[/C][C]0.452[/C][C]0.503[/C][/ROW]
[ROW][C]Inst[/C][C]1[/C][C]537.965[/C][C]268.982[/C][C]1.869[/C][C]0.16[/C][/ROW]
[ROW][C]Exp:Inst[/C][C]1[/C][C]3814.741[/C][C]1907.371[/C][C]13.251[/C][C]0[/C][/ROW]
[ROW][C]Residuals[/C][C]90[/C][C]12954.523[/C][C]143.939[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=79496&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=79496&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
1
Exp165.0165.010.4520.503
Inst1537.965268.9821.8690.16
Exp:Inst13814.7411907.37113.2510
Residuals9012954.523143.939







Tukey Honest Significant Difference Comparisons
difflwruprp adj
LOW-HIGH-1.646-6.5113.2190.503
NONE-GOOD2.7-4.49.80.638
SCIENTIFIC-GOOD5.852-1.4113.1140.139
SCIENTIFIC-NONE3.152-3.94810.2520.543
LOW:GOOD-HIGH:GOOD-19.416-32.025-6.8070
HIGH:NONE-HIGH:GOOD-11.357-24.1431.4280.111
LOW:NONE-HIGH:GOOD-4.857-17.3077.5930.865
HIGH:SCIENTIFIC-HIGH:GOOD-8.302-20.7514.1480.384
LOW:SCIENTIFIC-HIGH:GOOD0.566-12.89114.0221
HIGH:NONE-LOW:GOOD8.059-4.1120.2280.392
LOW:NONE-LOW:GOOD14.5592.74326.3750.007
HIGH:SCIENTIFIC-LOW:GOOD11.114-0.70122.930.077
LOW:SCIENTIFIC-LOW:GOOD19.9827.1132.8540
LOW:NONE-HIGH:NONE6.5-5.50418.5040.616
HIGH:SCIENTIFIC-HIGH:NONE3.056-8.94915.060.976
LOW:SCIENTIFIC-HIGH:NONE11.923-1.12224.9680.093
HIGH:SCIENTIFIC-LOW:NONE-3.444-15.098.2010.955
LOW:SCIENTIFIC-LOW:NONE5.423-7.29318.1390.815
LOW:SCIENTIFIC-HIGH:SCIENTIFIC8.868-3.84921.5840.333

\begin{tabular}{lllllllll}
\hline
Tukey Honest Significant Difference Comparisons \tabularnewline
  & diff & lwr & upr & p adj \tabularnewline
LOW-HIGH & -1.646 & -6.511 & 3.219 & 0.503 \tabularnewline
NONE-GOOD & 2.7 & -4.4 & 9.8 & 0.638 \tabularnewline
SCIENTIFIC-GOOD & 5.852 & -1.41 & 13.114 & 0.139 \tabularnewline
SCIENTIFIC-NONE & 3.152 & -3.948 & 10.252 & 0.543 \tabularnewline
LOW:GOOD-HIGH:GOOD & -19.416 & -32.025 & -6.807 & 0 \tabularnewline
HIGH:NONE-HIGH:GOOD & -11.357 & -24.143 & 1.428 & 0.111 \tabularnewline
LOW:NONE-HIGH:GOOD & -4.857 & -17.307 & 7.593 & 0.865 \tabularnewline
HIGH:SCIENTIFIC-HIGH:GOOD & -8.302 & -20.751 & 4.148 & 0.384 \tabularnewline
LOW:SCIENTIFIC-HIGH:GOOD & 0.566 & -12.891 & 14.022 & 1 \tabularnewline
HIGH:NONE-LOW:GOOD & 8.059 & -4.11 & 20.228 & 0.392 \tabularnewline
LOW:NONE-LOW:GOOD & 14.559 & 2.743 & 26.375 & 0.007 \tabularnewline
HIGH:SCIENTIFIC-LOW:GOOD & 11.114 & -0.701 & 22.93 & 0.077 \tabularnewline
LOW:SCIENTIFIC-LOW:GOOD & 19.982 & 7.11 & 32.854 & 0 \tabularnewline
LOW:NONE-HIGH:NONE & 6.5 & -5.504 & 18.504 & 0.616 \tabularnewline
HIGH:SCIENTIFIC-HIGH:NONE & 3.056 & -8.949 & 15.06 & 0.976 \tabularnewline
LOW:SCIENTIFIC-HIGH:NONE & 11.923 & -1.122 & 24.968 & 0.093 \tabularnewline
HIGH:SCIENTIFIC-LOW:NONE & -3.444 & -15.09 & 8.201 & 0.955 \tabularnewline
LOW:SCIENTIFIC-LOW:NONE & 5.423 & -7.293 & 18.139 & 0.815 \tabularnewline
LOW:SCIENTIFIC-HIGH:SCIENTIFIC & 8.868 & -3.849 & 21.584 & 0.333 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=79496&T=3

[TABLE]
[ROW][C]Tukey Honest Significant Difference Comparisons[/C][/ROW]
[ROW][C] [/C][C]diff[/C][C]lwr[/C][C]upr[/C][C]p adj[/C][/ROW]
[ROW][C]LOW-HIGH[/C][C]-1.646[/C][C]-6.511[/C][C]3.219[/C][C]0.503[/C][/ROW]
[ROW][C]NONE-GOOD[/C][C]2.7[/C][C]-4.4[/C][C]9.8[/C][C]0.638[/C][/ROW]
[ROW][C]SCIENTIFIC-GOOD[/C][C]5.852[/C][C]-1.41[/C][C]13.114[/C][C]0.139[/C][/ROW]
[ROW][C]SCIENTIFIC-NONE[/C][C]3.152[/C][C]-3.948[/C][C]10.252[/C][C]0.543[/C][/ROW]
[ROW][C]LOW:GOOD-HIGH:GOOD[/C][C]-19.416[/C][C]-32.025[/C][C]-6.807[/C][C]0[/C][/ROW]
[ROW][C]HIGH:NONE-HIGH:GOOD[/C][C]-11.357[/C][C]-24.143[/C][C]1.428[/C][C]0.111[/C][/ROW]
[ROW][C]LOW:NONE-HIGH:GOOD[/C][C]-4.857[/C][C]-17.307[/C][C]7.593[/C][C]0.865[/C][/ROW]
[ROW][C]HIGH:SCIENTIFIC-HIGH:GOOD[/C][C]-8.302[/C][C]-20.751[/C][C]4.148[/C][C]0.384[/C][/ROW]
[ROW][C]LOW:SCIENTIFIC-HIGH:GOOD[/C][C]0.566[/C][C]-12.891[/C][C]14.022[/C][C]1[/C][/ROW]
[ROW][C]HIGH:NONE-LOW:GOOD[/C][C]8.059[/C][C]-4.11[/C][C]20.228[/C][C]0.392[/C][/ROW]
[ROW][C]LOW:NONE-LOW:GOOD[/C][C]14.559[/C][C]2.743[/C][C]26.375[/C][C]0.007[/C][/ROW]
[ROW][C]HIGH:SCIENTIFIC-LOW:GOOD[/C][C]11.114[/C][C]-0.701[/C][C]22.93[/C][C]0.077[/C][/ROW]
[ROW][C]LOW:SCIENTIFIC-LOW:GOOD[/C][C]19.982[/C][C]7.11[/C][C]32.854[/C][C]0[/C][/ROW]
[ROW][C]LOW:NONE-HIGH:NONE[/C][C]6.5[/C][C]-5.504[/C][C]18.504[/C][C]0.616[/C][/ROW]
[ROW][C]HIGH:SCIENTIFIC-HIGH:NONE[/C][C]3.056[/C][C]-8.949[/C][C]15.06[/C][C]0.976[/C][/ROW]
[ROW][C]LOW:SCIENTIFIC-HIGH:NONE[/C][C]11.923[/C][C]-1.122[/C][C]24.968[/C][C]0.093[/C][/ROW]
[ROW][C]HIGH:SCIENTIFIC-LOW:NONE[/C][C]-3.444[/C][C]-15.09[/C][C]8.201[/C][C]0.955[/C][/ROW]
[ROW][C]LOW:SCIENTIFIC-LOW:NONE[/C][C]5.423[/C][C]-7.293[/C][C]18.139[/C][C]0.815[/C][/ROW]
[ROW][C]LOW:SCIENTIFIC-HIGH:SCIENTIFIC[/C][C]8.868[/C][C]-3.849[/C][C]21.584[/C][C]0.333[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=79496&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=79496&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Tukey Honest Significant Difference Comparisons
difflwruprp adj
LOW-HIGH-1.646-6.5113.2190.503
NONE-GOOD2.7-4.49.80.638
SCIENTIFIC-GOOD5.852-1.4113.1140.139
SCIENTIFIC-NONE3.152-3.94810.2520.543
LOW:GOOD-HIGH:GOOD-19.416-32.025-6.8070
HIGH:NONE-HIGH:GOOD-11.357-24.1431.4280.111
LOW:NONE-HIGH:GOOD-4.857-17.3077.5930.865
HIGH:SCIENTIFIC-HIGH:GOOD-8.302-20.7514.1480.384
LOW:SCIENTIFIC-HIGH:GOOD0.566-12.89114.0221
HIGH:NONE-LOW:GOOD8.059-4.1120.2280.392
LOW:NONE-LOW:GOOD14.5592.74326.3750.007
HIGH:SCIENTIFIC-LOW:GOOD11.114-0.70122.930.077
LOW:SCIENTIFIC-LOW:GOOD19.9827.1132.8540
LOW:NONE-HIGH:NONE6.5-5.50418.5040.616
HIGH:SCIENTIFIC-HIGH:NONE3.056-8.94915.060.976
LOW:SCIENTIFIC-HIGH:NONE11.923-1.12224.9680.093
HIGH:SCIENTIFIC-LOW:NONE-3.444-15.098.2010.955
LOW:SCIENTIFIC-LOW:NONE5.423-7.29318.1390.815
LOW:SCIENTIFIC-HIGH:SCIENTIFIC8.868-3.84921.5840.333







Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group51.4980.199
90

\begin{tabular}{lllllllll}
\hline
Levenes Test for Homogeneity of Variance \tabularnewline
  & Df & F value & Pr(>F) \tabularnewline
Group & 5 & 1.498 & 0.199 \tabularnewline
  & 90 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=79496&T=4

[TABLE]
[ROW][C]Levenes Test for Homogeneity of Variance[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]Group[/C][C]5[/C][C]1.498[/C][C]0.199[/C][/ROW]
[ROW][C] [/C][C]90[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=79496&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=79496&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group51.4980.199
90



Parameters (Session):
par1 = 3 ; par2 = 2 ; par3 = 1 ; par4 = TRUE ;
Parameters (R input):
par1 = 3 ; par2 = 2 ; par3 = 1 ; par4 = TRUE ;
R code (references can be found in the software module):
cat1 <- as.numeric(par1) #
cat2<- as.numeric(par2) #
cat3 <- as.numeric(par3)
intercept<-as.logical(par4)
x <- t(x)
x1<-as.numeric(x[,cat1])
f1<-as.character(x[,cat2])
f2 <- as.character(x[,cat3])
xdf<-data.frame(x1,f1, f2)
(V1<-dimnames(y)[[1]][cat1])
(V2<-dimnames(y)[[1]][cat2])
(V3 <-dimnames(y)[[1]][cat3])
mynames<- c(V1, V2, V3)
xdf2<-xdf
names(xdf2)<-mynames
names(xdf)<-c('R', 'A', 'B')
mynames <- c(V1, V2, V3)
if(intercept == FALSE)eval (substitute(lmout<-lm(xdf$R ~ xdf$A * xdf$B- 1, data = xdf), list(xdf=quote(xdf2),R=mynames[1],A=mynames[2],B=mynames[3]) ))else eval(substitute(lmout<-lm(xdf$R ~ xdf$A * xdf$B, data = xdf), list(xdf=quote(xdf2),R=mynames[1],A=mynames[2],B=mynames[3]) ))

oldnames<-names(lmout$coeff)
newnames<-gsub('xdf2\\$', '', oldnames)
(names(lmout$coeff)<-newnames)
(names(lmout$coefficients)<-newnames)

load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Model', length(lmout$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
callstr<-gsub('xdf2\\$', '',as.character(lmout$call$formula))
callstr<-paste(callstr[2], callstr[1], callstr[3])
a<-table.element(a,callstr ,length(lmout$coefficients)+1,TRUE)
a<-table.row.end(a)

a<-table.row.start(a)
a<-table.element(a, 'names',,TRUE)
for(i in 1:length(lmout$coefficients)){
a<-table.element(a, names(lmout$coefficients[i]),,FALSE)
}
a<-table.row.end(a)


a<-table.row.start(a)
a<-table.element(a, 'means',,TRUE)
for(i in 1:length(lmout$coefficients)){
a<-table.element(a, round(lmout$coefficients[i], digits=3),,FALSE)
}
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')

(aov.xdf<-aov(lmout) )
(anova.xdf<-anova(lmout) )
rownames(anova.xdf)<-gsub('xdf2\\$','',rownames(anova.xdf))

a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Statistics', 5+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ',,TRUE)
a<-table.element(a, 'Df',,FALSE)
a<-table.element(a, 'Sum Sq',,FALSE)
a<-table.element(a, 'Mean Sq',,FALSE)
a<-table.element(a, 'F value',,FALSE)
a<-table.element(a, 'Pr(>F)',,FALSE)
a<-table.row.end(a)
for(i in 1 : length(rownames(anova.xdf))-1){
a<-table.row.start(a)
a<-table.element(a,rownames(anova.xdf)[i] ,,TRUE)
a<-table.element(a, anova.xdf$Df[1],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[i], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[i], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'F value'[i], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Pr(>F)'[i], digits=3),,FALSE)
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a, 'Residuals',,TRUE)
a<-table.element(a, anova.xdf$'Df'[i+1],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[i+1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[i+1], digits=3),,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
bitmap(file='anovaplot.png')
boxplot(R ~ A + B, data=xdf, xlab=V2, ylab=V1, main='Boxplots of ANOVA Groups',cex.axis=0.7 )
dev.off()
bitmap(file='designplot.png')
xdf2 <- xdf # to preserve xdf make copy for function
names(xdf2) <- c(V1, V2, V3)
plot.design(xdf2, main='Design Plot of Group Means')
dev.off()
bitmap(file='interactionplot.png')
interaction.plot(xdf$A, xdf$B, xdf$R, xlab=V2, ylab=V1, trace.label=V3, main='Possible Interactions Between Anova Groups')
dev.off()
if(intercept==TRUE){
thsd<-TukeyHSD(aov.xdf)
names(thsd) <- c(V2, V3, paste(V2, ':', V3, sep=''))
bitmap(file='TukeyHSDPlot.png')
par(mai=c(1,1.5,1,1))
layout(matrix(c(1,2,1,2,3,3,3,3), 2,4))
plot(thsd, las=1)
dev.off()
}
if(intercept==TRUE){
ntables<-length(names(thsd))
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Tukey Honest Significant Difference Comparisons', 5,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ', 1, TRUE)
for(i in 1:4){
a<-table.element(a,colnames(thsd[[1]])[i], 1, TRUE)
}
a<-table.row.end(a)
for(nt in 1:ntables){
for(i in 1:length(rownames(thsd[[nt]]))){
a<-table.row.start(a)
a<-table.element(a,rownames(thsd[[nt]])[i], 1, TRUE)
for(j in 1:4){
a<-table.element(a,round(thsd[[nt]][i,j], digits=3), 1, FALSE)
}
a<-table.row.end(a)
}
} # end nt
a<-table.end(a)
table.save(a,file='hsdtable.tab')
}#end if hsd tables
if(intercept==FALSE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'TukeyHSD Message', 1,TRUE)
a<-table.row.end(a)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Must Include Intercept to use Tukey Test ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
library(car)
lt.lmxdf<-levene.test(lmout)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Levenes Test for Homogeneity of Variance', 4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
for (i in 1:3){
a<-table.element(a,names(lt.lmxdf)[i], 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Group', 1, TRUE)
for (i in 1:3){
a<-table.element(a,round(lt.lmxdf[[i]][1], digits=3), 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
a<-table.element(a,lt.lmxdf[[1]][2], 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')