Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_pairs.wasp
Title produced by softwareKendall tau Correlation Matrix
Date of computationMon, 05 Nov 2012 06:32:54 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Nov/05/t1352115194l7at6z1ufjbtbe4.htm/, Retrieved Wed, 01 Feb 2023 15:48:54 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=185981, Retrieved Wed, 01 Feb 2023 15:48:54 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact95
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Competence to learn] [2010-11-17 07:43:53] [b98453cac15ba1066b407e146608df68]
- RMP     [Kendall tau Correlation Matrix] [] [2012-11-05 11:32:54] [70625068b3924f89f7a6efd1a4acaa7e] [Current]
Feedback Forum

Post a new message
Dataseries X:
41	38	13	12	14	12	53	32
39	32	16	11	18	11	83	51
30	35	19	15	11	14	66	42
31	33	15	6	12	12	67	41
34	37	14	13	16	21	76	46
35	29	13	10	18	12	78	47
39	31	19	12	14	22	53	37
34	36	15	14	14	11	80	49
36	35	14	12	15	10	74	45
37	38	15	9	15	13	76	47
38	31	16	10	17	10	79	49
36	34	16	12	19	8	54	33
38	35	16	12	10	15	67	42
39	38	16	11	16	14	54	33
33	37	17	15	18	10	87	53
32	33	15	12	14	14	58	36
36	32	15	10	14	14	75	45
38	38	20	12	17	11	88	54
39	38	18	11	14	10	64	41
32	32	16	12	16	13	57	36
32	33	16	11	18	9.5	66	41
31	31	16	12	11	14	68	44
39	38	19	13	14	12	54	33
37	39	16	11	12	14	56	37
39	32	17	12	17	11	86	52
41	32	17	13	9	9	80	47
36	35	16	10	16	11	76	43
33	37	15	14	14	15	69	44
33	33	16	12	15	14	78	45
34	33	14	10	11	13	67	44
31	31	15	12	16	9	80	49
27	32	12	8	13	15	54	33
37	31	14	10	17	10	71	43
34	37	16	12	15	11	84	54
34	30	14	12	14	13	74	42
32	33	10	7	16	8	71	44
29	31	10	9	9	20	63	37
36	33	14	12	15	12	71	43
29	31	16	10	17	10	76	46
35	33	16	10	13	10	69	42
37	32	16	10	15	9	74	45
34	33	14	12	16	14	75	44
38	32	20	15	16	8	54	33
35	33	14	10	12	14	52	31
38	28	14	10	15	11	69	42
37	35	11	12	11	13	68	40
38	39	14	13	15	9	65	43
33	34	15	11	15	11	75	46
36	38	16	11	17	15	74	42
38	32	14	12	13	11	75	45
32	38	16	14	16	10	72	44
32	30	14	10	14	14	67	40
32	33	12	12	11	18	63	37
34	38	16	13	12	14	62	46
32	32	9	5	12	11	63	36
37	35	14	6	15	14.5	76	47
39	34	16	12	16	13	74	45
29	34	16	12	15	9	67	42
37	36	15	11	12	10	73	43
35	34	16	10	12	15	70	43
30	28	12	7	8	20	53	32
38	34	16	12	13	12	77	45
34	35	16	14	11	12	80	48
31	35	14	11	14	14	52	31
34	31	16	12	15	13	54	33
35	37	17	13	10	11	80	49
36	35	18	14	11	17	66	42
30	27	18	11	12	12	73	41
39	40	12	12	15	13	63	38
35	37	16	12	15	14	69	42
38	36	10	8	14	13	67	44
31	38	14	11	16	15	54	33
34	39	18	14	15	13	81	48
38	41	18	14	15	10	69	40
34	27	16	12	13	11	84	50
39	30	17	9	12	19	80	49
37	37	16	13	17	13	70	43
34	31	16	11	13	17	69	44
28	31	13	12	15	13	77	47
37	27	16	12	13	9	54	33
33	36	16	12	15	11	79	46
35	37	16	12	15	9	71	45
37	33	15	12	16	12	73	43
32	34	15	11	15	12	72	44
33	31	16	10	14	13	77	47
38	39	14	9	15	13	75	45
33	34	16	12	14	12	69	42
29	32	16	12	13	15	54	33
33	33	15	12	7	22	70	43
31	36	12	9	17	13	73	46
36	32	17	15	13	15	54	33
35	41	16	12	15	13	77	46
32	28	15	12	14	15	82	48
29	30	13	12	13	12.5	80	47
39	36	16	10	16	11	80	47
37	35	16	13	12	16	69	43
35	31	16	9	14	11	78	46
37	34	16	12	17	11	81	48
32	36	14	10	15	10	76	46
38	36	16	14	17	10	76	45
37	35	16	11	12	16	73	45
36	37	20	15	16	12	85	52
32	28	15	11	11	11	66	42
33	39	16	11	15	16	79	47
40	32	13	12	9	19	68	41
38	35	17	12	16	11	76	47
41	39	16	12	15	16	71	43
36	35	16	11	10	15	54	33
43	42	12	7	10	24	46	30
30	34	16	12	15	14	85	52
31	33	16	14	11	15	74	44
32	41	17	11	13	11	88	55
32	33	13	11	14	15	38	11
37	34	12	10	18	12	76	47
37	32	18	13	16	10	86	53
33	40	14	13	14	14	54	33
34	40	14	8	14	13	67	44
33	35	13	11	14	9	69	42
38	36	16	12	14	15	90	55
33	37	13	11	12	15	54	33
31	27	16	13	14	14	76	46
38	39	13	12	15	11	89	54
37	38	16	14	15	8	76	47
36	31	15	13	15	11	73	45
31	33	16	15	13	11	79	47
39	32	15	10	17	8	90	55
44	39	17	11	17	10	74	44
33	36	15	9	19	11	81	53
35	33	12	11	15	13	72	44
32	33	16	10	13	11	71	42
28	32	10	11	9	20	66	40
40	37	16	8	15	10	77	46
27	30	12	11	15	15	65	40
37	38	14	12	15	12	74	46
32	29	15	12	16	14	85	53
28	22	13	9	11	23	54	33
34	35	15	11	14	14	63	42
30	35	11	10	11	16	54	35
35	34	12	8	15	11	64	40
31	35	11	9	13	12	69	41
32	34	16	8	15	10	54	33
30	37	15	9	16	14	84	51
30	35	17	15	14	12	86	53
31	23	16	11	15	12	77	46
40	31	10	8	16	11	89	55
32	27	18	13	16	12	76	47
36	36	13	12	11	13	60	38
32	31	16	12	12	11	75	46
35	32	13	9	9	19	73	46
38	39	10	7	16	12	85	53
42	37	15	13	13	17	79	47
34	38	16	9	16	9	71	41
35	39	16	6	12	12	72	44
38	34	14	8	9	19	69	43
33	31	10	8	13	18	78	51
36	32	17	15	13	15	54	33
32	37	13	6	14	14	69	43
33	36	15	9	19	11	81	53
34	32	16	11	13	9	84	51
32	38	12	8	12	18	84	50
34	36	13	8	13	16	69	46
27	26	13	10	10	24	66	43
31	26	12	8	14	14	81	47
38	33	17	14	16	20	82	50
34	39	15	10	10	18	72	43
24	30	10	8	11	23	54	33
30	33	14	11	14	12	78	48
26	25	11	12	12	14	74	44
34	38	13	12	9	16	82	50
27	37	16	12	9	18	73	41
37	31	12	5	11	20	55	34
36	37	16	12	16	12	72	44
41	35	12	10	9	12	78	47
29	25	9	7	13	17	59	35
36	28	12	12	16	13	72	44
32	35	15	11	13	9	78	44
37	33	12	8	9	16	68	43
30	30	12	9	12	18	69	41
31	31	14	10	16	10	67	41
38	37	12	9	11	14	74	42
36	36	16	12	14	11	54	33
35	30	11	6	13	9	67	41
31	36	19	15	15	11	70	44
38	32	15	12	14	10	80	48
22	28	8	12	16	11	89	55
32	36	16	12	13	19	76	44
36	34	17	11	14	14	74	43
39	31	12	7	15	12	87	52
28	28	11	7	13	14	54	30
32	36	11	5	11	21	61	39
32	36	14	12	11	13	38	11
38	40	16	12	14	10	75	44
32	33	12	3	15	15	69	42
35	37	16	11	11	16	62	41
32	32	13	10	15	14	72	44
37	38	15	12	12	12	70	44
34	31	16	9	14	19	79	48
33	37	16	12	14	15	87	53
33	33	14	9	8	19	62	37
26	32	16	12	13	13	77	44
30	30	16	12	9	17	69	44
24	30	14	10	15	12	69	40
34	31	11	9	17	11	75	42
34	32	12	12	13	14	54	35
33	34	15	8	15	11	72	43
34	36	15	11	15	13	74	45
35	37	16	11	14	12	85	55
35	36	16	12	16	15	52	31
36	33	11	10	13	14	70	44
34	33	15	10	16	12	84	50
34	33	12	12	9	17	64	40
41	44	12	12	16	11	84	53
32	39	15	11	11	18	87	54
30	32	15	8	10	13	79	49
35	35	16	12	11	17	67	40
28	25	14	10	15	13	65	41
33	35	17	11	17	11	85	52
39	34	14	10	14	12	83	52
36	35	13	8	8	22	61	36
36	39	15	12	15	14	82	52
35	33	13	12	11	12	76	46
38	36	14	10	16	12	58	31
33	32	15	12	10	17	72	44
31	32	12	9	15	9	72	44
34	36	13	9	9	21	38	11
32	36	8	6	16	10	78	46
31	32	14	10	19	11	54	33
33	34	14	9	12	12	63	34
34	33	11	9	8	23	66	42
34	35	12	9	11	13	70	43
34	30	13	6	14	12	71	43
33	38	10	10	9	16	67	44
32	34	16	6	15	9	58	36
41	33	18	14	13	17	72	46
34	32	13	10	16	9	72	44
36	31	11	10	11	14	70	43
37	30	4	6	12	17	76	50
36	27	13	12	13	13	50	33
29	31	16	12	10	11	72	43
37	30	10	7	11	12	72	44
27	32	12	8	12	10	88	53
35	35	12	11	8	19	53	34
28	28	10	3	12	16	58	35
35	33	13	6	12	16	66	40
37	31	15	10	15	14	82	53
29	35	12	8	11	20	69	42
32	35	14	9	13	15	68	43
36	32	10	9	14	23	44	29
19	21	12	8	10	20	56	36
21	20	12	9	12	16	53	30
31	34	11	7	15	14	70	42
33	32	10	7	13	17	78	47
36	34	12	6	13	11	71	44
33	32	16	9	13	13	72	45
37	33	12	10	12	17	68	44
34	33	14	11	12	15	67	43
35	37	16	12	9	21	75	43
31	32	14	8	9	18	62	40
37	34	13	11	15	15	67	41
35	30	4	3	10	8	83	52
27	30	15	11	14	12	64	38
34	38	11	12	15	12	68	41
40	36	11	7	7	22	62	39
29	32	14	9	14	12	72	43




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=185981&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=185981&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=185981&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Correlations for all pairs of data series (method=pearson)
ConnectedSeparateLearningSoftwareHappinessDepressionBelongingBelonging_Final
Connected10.4550.20.1340.133-0.1360.1240.144
Separate0.45510.2230.190.11-0.0990.10.107
Learning0.20.22310.6230.249-0.2310.1430.125
Software0.1340.190.62310.164-0.1640.1140.098
Happiness0.1330.110.2490.1641-0.5830.2870.263
Depression-0.136-0.099-0.231-0.164-0.5831-0.329-0.283
Belonging0.1240.10.1430.1140.287-0.32910.953
Belonging_Final0.1440.1070.1250.0980.263-0.2830.9531

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series (method=pearson) \tabularnewline
  & Connected & Separate & Learning & Software & Happiness & Depression & Belonging & Belonging_Final \tabularnewline
Connected & 1 & 0.455 & 0.2 & 0.134 & 0.133 & -0.136 & 0.124 & 0.144 \tabularnewline
Separate & 0.455 & 1 & 0.223 & 0.19 & 0.11 & -0.099 & 0.1 & 0.107 \tabularnewline
Learning & 0.2 & 0.223 & 1 & 0.623 & 0.249 & -0.231 & 0.143 & 0.125 \tabularnewline
Software & 0.134 & 0.19 & 0.623 & 1 & 0.164 & -0.164 & 0.114 & 0.098 \tabularnewline
Happiness & 0.133 & 0.11 & 0.249 & 0.164 & 1 & -0.583 & 0.287 & 0.263 \tabularnewline
Depression & -0.136 & -0.099 & -0.231 & -0.164 & -0.583 & 1 & -0.329 & -0.283 \tabularnewline
Belonging & 0.124 & 0.1 & 0.143 & 0.114 & 0.287 & -0.329 & 1 & 0.953 \tabularnewline
Belonging_Final & 0.144 & 0.107 & 0.125 & 0.098 & 0.263 & -0.283 & 0.953 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=185981&T=1

[TABLE]
[ROW][C]Correlations for all pairs of data series (method=pearson)[/C][/ROW]
[ROW][C] [/C][C]Connected[/C][C]Separate[/C][C]Learning[/C][C]Software[/C][C]Happiness[/C][C]Depression[/C][C]Belonging[/C][C]Belonging_Final[/C][/ROW]
[ROW][C]Connected[/C][C]1[/C][C]0.455[/C][C]0.2[/C][C]0.134[/C][C]0.133[/C][C]-0.136[/C][C]0.124[/C][C]0.144[/C][/ROW]
[ROW][C]Separate[/C][C]0.455[/C][C]1[/C][C]0.223[/C][C]0.19[/C][C]0.11[/C][C]-0.099[/C][C]0.1[/C][C]0.107[/C][/ROW]
[ROW][C]Learning[/C][C]0.2[/C][C]0.223[/C][C]1[/C][C]0.623[/C][C]0.249[/C][C]-0.231[/C][C]0.143[/C][C]0.125[/C][/ROW]
[ROW][C]Software[/C][C]0.134[/C][C]0.19[/C][C]0.623[/C][C]1[/C][C]0.164[/C][C]-0.164[/C][C]0.114[/C][C]0.098[/C][/ROW]
[ROW][C]Happiness[/C][C]0.133[/C][C]0.11[/C][C]0.249[/C][C]0.164[/C][C]1[/C][C]-0.583[/C][C]0.287[/C][C]0.263[/C][/ROW]
[ROW][C]Depression[/C][C]-0.136[/C][C]-0.099[/C][C]-0.231[/C][C]-0.164[/C][C]-0.583[/C][C]1[/C][C]-0.329[/C][C]-0.283[/C][/ROW]
[ROW][C]Belonging[/C][C]0.124[/C][C]0.1[/C][C]0.143[/C][C]0.114[/C][C]0.287[/C][C]-0.329[/C][C]1[/C][C]0.953[/C][/ROW]
[ROW][C]Belonging_Final[/C][C]0.144[/C][C]0.107[/C][C]0.125[/C][C]0.098[/C][C]0.263[/C][C]-0.283[/C][C]0.953[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=185981&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=185981&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series (method=pearson)
ConnectedSeparateLearningSoftwareHappinessDepressionBelongingBelonging_Final
Connected10.4550.20.1340.133-0.1360.1240.144
Separate0.45510.2230.190.11-0.0990.10.107
Learning0.20.22310.6230.249-0.2310.1430.125
Software0.1340.190.62310.164-0.1640.1140.098
Happiness0.1330.110.2490.1641-0.5830.2870.263
Depression-0.136-0.099-0.231-0.164-0.5831-0.329-0.283
Belonging0.1240.10.1430.1140.287-0.32910.953
Belonging_Final0.1440.1070.1250.0980.263-0.2830.9531







Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
Connected;Separate0.45510.33880.2521
p-value(0)(0)(0)
Connected;Learning0.19960.18150.1373
p-value(0.0011)(0.0031)(0.0026)
Connected;Software0.13390.14890.111
p-value(0.0296)(0.0155)(0.015)
Connected;Happiness0.13280.15240.1127
p-value(0.031)(0.0132)(0.0125)
Connected;Depression-0.1364-0.1382-0.102
p-value(0.0267)(0.0247)(0.0222)
Connected;Belonging0.12390.12690.0929
p-value(0.0443)(0.0394)(0.0328)
Connected;Belonging_Final0.14390.15010.1089
p-value(0.0193)(0.0146)(0.0133)
Separate;Learning0.22270.21370.1602
p-value(3e-04)(5e-04)(5e-04)
Separate;Software0.18970.20020.1481
p-value(0.002)(0.0011)(0.0012)
Separate;Happiness0.10990.11550.0815
p-value(0.0747)(0.061)(0.0715)
Separate;Depression-0.0993-0.0482-0.0358
p-value(0.1073)(0.4351)(0.4229)
Separate;Belonging0.10.06860.0491
p-value(0.1049)(0.2666)(0.2598)
Separate;Belonging_Final0.10730.08480.0607
p-value(0.082)(0.1693)(0.1687)
Learning;Software0.62340.58320.4726
p-value(0)(0)(0)
Learning;Happiness0.24860.23950.1798
p-value(0)(1e-04)(1e-04)
Learning;Depression-0.2309-0.2491-0.1892
p-value(2e-04)(0)(0)
Learning;Belonging0.14320.22030.1662
p-value(0.02)(3e-04)(2e-04)
Learning;Belonging_Final0.1250.19710.1494
p-value(0.0424)(0.0013)(9e-04)
Software;Happiness0.16420.15230.1123
p-value(0.0075)(0.0132)(0.0154)
Software;Depression-0.1636-0.1296-0.0961
p-value(0.0077)(0.0353)(0.0361)
Software;Belonging0.11390.13560.1001
p-value(0.0647)(0.0276)(0.0253)
Software;Belonging_Final0.09760.13280.0985
p-value(0.1137)(0.031)(0.0294)
Happiness;Depression-0.5829-0.5407-0.4228
p-value(0)(0)(0)
Happiness;Belonging0.28710.33210.2409
p-value(0)(0)(0)
Happiness;Belonging_Final0.26330.29750.2184
p-value(0)(0)(0)
Depression;Belonging-0.3294-0.3248-0.233
p-value(0)(0)(0)
Depression;Belonging_Final-0.2829-0.2823-0.2045
p-value(0)(0)(0)
Belonging;Belonging_Final0.9530.94570.8488
p-value(0)(0)(0)

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series with p-values \tabularnewline
pair & Pearson r & Spearman rho & Kendall tau \tabularnewline
Connected;Separate & 0.4551 & 0.3388 & 0.2521 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
Connected;Learning & 0.1996 & 0.1815 & 0.1373 \tabularnewline
p-value & (0.0011) & (0.0031) & (0.0026) \tabularnewline
Connected;Software & 0.1339 & 0.1489 & 0.111 \tabularnewline
p-value & (0.0296) & (0.0155) & (0.015) \tabularnewline
Connected;Happiness & 0.1328 & 0.1524 & 0.1127 \tabularnewline
p-value & (0.031) & (0.0132) & (0.0125) \tabularnewline
Connected;Depression & -0.1364 & -0.1382 & -0.102 \tabularnewline
p-value & (0.0267) & (0.0247) & (0.0222) \tabularnewline
Connected;Belonging & 0.1239 & 0.1269 & 0.0929 \tabularnewline
p-value & (0.0443) & (0.0394) & (0.0328) \tabularnewline
Connected;Belonging_Final & 0.1439 & 0.1501 & 0.1089 \tabularnewline
p-value & (0.0193) & (0.0146) & (0.0133) \tabularnewline
Separate;Learning & 0.2227 & 0.2137 & 0.1602 \tabularnewline
p-value & (3e-04) & (5e-04) & (5e-04) \tabularnewline
Separate;Software & 0.1897 & 0.2002 & 0.1481 \tabularnewline
p-value & (0.002) & (0.0011) & (0.0012) \tabularnewline
Separate;Happiness & 0.1099 & 0.1155 & 0.0815 \tabularnewline
p-value & (0.0747) & (0.061) & (0.0715) \tabularnewline
Separate;Depression & -0.0993 & -0.0482 & -0.0358 \tabularnewline
p-value & (0.1073) & (0.4351) & (0.4229) \tabularnewline
Separate;Belonging & 0.1 & 0.0686 & 0.0491 \tabularnewline
p-value & (0.1049) & (0.2666) & (0.2598) \tabularnewline
Separate;Belonging_Final & 0.1073 & 0.0848 & 0.0607 \tabularnewline
p-value & (0.082) & (0.1693) & (0.1687) \tabularnewline
Learning;Software & 0.6234 & 0.5832 & 0.4726 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
Learning;Happiness & 0.2486 & 0.2395 & 0.1798 \tabularnewline
p-value & (0) & (1e-04) & (1e-04) \tabularnewline
Learning;Depression & -0.2309 & -0.2491 & -0.1892 \tabularnewline
p-value & (2e-04) & (0) & (0) \tabularnewline
Learning;Belonging & 0.1432 & 0.2203 & 0.1662 \tabularnewline
p-value & (0.02) & (3e-04) & (2e-04) \tabularnewline
Learning;Belonging_Final & 0.125 & 0.1971 & 0.1494 \tabularnewline
p-value & (0.0424) & (0.0013) & (9e-04) \tabularnewline
Software;Happiness & 0.1642 & 0.1523 & 0.1123 \tabularnewline
p-value & (0.0075) & (0.0132) & (0.0154) \tabularnewline
Software;Depression & -0.1636 & -0.1296 & -0.0961 \tabularnewline
p-value & (0.0077) & (0.0353) & (0.0361) \tabularnewline
Software;Belonging & 0.1139 & 0.1356 & 0.1001 \tabularnewline
p-value & (0.0647) & (0.0276) & (0.0253) \tabularnewline
Software;Belonging_Final & 0.0976 & 0.1328 & 0.0985 \tabularnewline
p-value & (0.1137) & (0.031) & (0.0294) \tabularnewline
Happiness;Depression & -0.5829 & -0.5407 & -0.4228 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
Happiness;Belonging & 0.2871 & 0.3321 & 0.2409 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
Happiness;Belonging_Final & 0.2633 & 0.2975 & 0.2184 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
Depression;Belonging & -0.3294 & -0.3248 & -0.233 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
Depression;Belonging_Final & -0.2829 & -0.2823 & -0.2045 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
Belonging;Belonging_Final & 0.953 & 0.9457 & 0.8488 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=185981&T=2

[TABLE]
[ROW][C]Correlations for all pairs of data series with p-values[/C][/ROW]
[ROW][C]pair[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]Connected;Separate[/C][C]0.4551[/C][C]0.3388[/C][C]0.2521[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]Connected;Learning[/C][C]0.1996[/C][C]0.1815[/C][C]0.1373[/C][/ROW]
[ROW][C]p-value[/C][C](0.0011)[/C][C](0.0031)[/C][C](0.0026)[/C][/ROW]
[ROW][C]Connected;Software[/C][C]0.1339[/C][C]0.1489[/C][C]0.111[/C][/ROW]
[ROW][C]p-value[/C][C](0.0296)[/C][C](0.0155)[/C][C](0.015)[/C][/ROW]
[ROW][C]Connected;Happiness[/C][C]0.1328[/C][C]0.1524[/C][C]0.1127[/C][/ROW]
[ROW][C]p-value[/C][C](0.031)[/C][C](0.0132)[/C][C](0.0125)[/C][/ROW]
[ROW][C]Connected;Depression[/C][C]-0.1364[/C][C]-0.1382[/C][C]-0.102[/C][/ROW]
[ROW][C]p-value[/C][C](0.0267)[/C][C](0.0247)[/C][C](0.0222)[/C][/ROW]
[ROW][C]Connected;Belonging[/C][C]0.1239[/C][C]0.1269[/C][C]0.0929[/C][/ROW]
[ROW][C]p-value[/C][C](0.0443)[/C][C](0.0394)[/C][C](0.0328)[/C][/ROW]
[ROW][C]Connected;Belonging_Final[/C][C]0.1439[/C][C]0.1501[/C][C]0.1089[/C][/ROW]
[ROW][C]p-value[/C][C](0.0193)[/C][C](0.0146)[/C][C](0.0133)[/C][/ROW]
[ROW][C]Separate;Learning[/C][C]0.2227[/C][C]0.2137[/C][C]0.1602[/C][/ROW]
[ROW][C]p-value[/C][C](3e-04)[/C][C](5e-04)[/C][C](5e-04)[/C][/ROW]
[ROW][C]Separate;Software[/C][C]0.1897[/C][C]0.2002[/C][C]0.1481[/C][/ROW]
[ROW][C]p-value[/C][C](0.002)[/C][C](0.0011)[/C][C](0.0012)[/C][/ROW]
[ROW][C]Separate;Happiness[/C][C]0.1099[/C][C]0.1155[/C][C]0.0815[/C][/ROW]
[ROW][C]p-value[/C][C](0.0747)[/C][C](0.061)[/C][C](0.0715)[/C][/ROW]
[ROW][C]Separate;Depression[/C][C]-0.0993[/C][C]-0.0482[/C][C]-0.0358[/C][/ROW]
[ROW][C]p-value[/C][C](0.1073)[/C][C](0.4351)[/C][C](0.4229)[/C][/ROW]
[ROW][C]Separate;Belonging[/C][C]0.1[/C][C]0.0686[/C][C]0.0491[/C][/ROW]
[ROW][C]p-value[/C][C](0.1049)[/C][C](0.2666)[/C][C](0.2598)[/C][/ROW]
[ROW][C]Separate;Belonging_Final[/C][C]0.1073[/C][C]0.0848[/C][C]0.0607[/C][/ROW]
[ROW][C]p-value[/C][C](0.082)[/C][C](0.1693)[/C][C](0.1687)[/C][/ROW]
[ROW][C]Learning;Software[/C][C]0.6234[/C][C]0.5832[/C][C]0.4726[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]Learning;Happiness[/C][C]0.2486[/C][C]0.2395[/C][C]0.1798[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](1e-04)[/C][C](1e-04)[/C][/ROW]
[ROW][C]Learning;Depression[/C][C]-0.2309[/C][C]-0.2491[/C][C]-0.1892[/C][/ROW]
[ROW][C]p-value[/C][C](2e-04)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]Learning;Belonging[/C][C]0.1432[/C][C]0.2203[/C][C]0.1662[/C][/ROW]
[ROW][C]p-value[/C][C](0.02)[/C][C](3e-04)[/C][C](2e-04)[/C][/ROW]
[ROW][C]Learning;Belonging_Final[/C][C]0.125[/C][C]0.1971[/C][C]0.1494[/C][/ROW]
[ROW][C]p-value[/C][C](0.0424)[/C][C](0.0013)[/C][C](9e-04)[/C][/ROW]
[ROW][C]Software;Happiness[/C][C]0.1642[/C][C]0.1523[/C][C]0.1123[/C][/ROW]
[ROW][C]p-value[/C][C](0.0075)[/C][C](0.0132)[/C][C](0.0154)[/C][/ROW]
[ROW][C]Software;Depression[/C][C]-0.1636[/C][C]-0.1296[/C][C]-0.0961[/C][/ROW]
[ROW][C]p-value[/C][C](0.0077)[/C][C](0.0353)[/C][C](0.0361)[/C][/ROW]
[ROW][C]Software;Belonging[/C][C]0.1139[/C][C]0.1356[/C][C]0.1001[/C][/ROW]
[ROW][C]p-value[/C][C](0.0647)[/C][C](0.0276)[/C][C](0.0253)[/C][/ROW]
[ROW][C]Software;Belonging_Final[/C][C]0.0976[/C][C]0.1328[/C][C]0.0985[/C][/ROW]
[ROW][C]p-value[/C][C](0.1137)[/C][C](0.031)[/C][C](0.0294)[/C][/ROW]
[ROW][C]Happiness;Depression[/C][C]-0.5829[/C][C]-0.5407[/C][C]-0.4228[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]Happiness;Belonging[/C][C]0.2871[/C][C]0.3321[/C][C]0.2409[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]Happiness;Belonging_Final[/C][C]0.2633[/C][C]0.2975[/C][C]0.2184[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]Depression;Belonging[/C][C]-0.3294[/C][C]-0.3248[/C][C]-0.233[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]Depression;Belonging_Final[/C][C]-0.2829[/C][C]-0.2823[/C][C]-0.2045[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]Belonging;Belonging_Final[/C][C]0.953[/C][C]0.9457[/C][C]0.8488[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=185981&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=185981&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
Connected;Separate0.45510.33880.2521
p-value(0)(0)(0)
Connected;Learning0.19960.18150.1373
p-value(0.0011)(0.0031)(0.0026)
Connected;Software0.13390.14890.111
p-value(0.0296)(0.0155)(0.015)
Connected;Happiness0.13280.15240.1127
p-value(0.031)(0.0132)(0.0125)
Connected;Depression-0.1364-0.1382-0.102
p-value(0.0267)(0.0247)(0.0222)
Connected;Belonging0.12390.12690.0929
p-value(0.0443)(0.0394)(0.0328)
Connected;Belonging_Final0.14390.15010.1089
p-value(0.0193)(0.0146)(0.0133)
Separate;Learning0.22270.21370.1602
p-value(3e-04)(5e-04)(5e-04)
Separate;Software0.18970.20020.1481
p-value(0.002)(0.0011)(0.0012)
Separate;Happiness0.10990.11550.0815
p-value(0.0747)(0.061)(0.0715)
Separate;Depression-0.0993-0.0482-0.0358
p-value(0.1073)(0.4351)(0.4229)
Separate;Belonging0.10.06860.0491
p-value(0.1049)(0.2666)(0.2598)
Separate;Belonging_Final0.10730.08480.0607
p-value(0.082)(0.1693)(0.1687)
Learning;Software0.62340.58320.4726
p-value(0)(0)(0)
Learning;Happiness0.24860.23950.1798
p-value(0)(1e-04)(1e-04)
Learning;Depression-0.2309-0.2491-0.1892
p-value(2e-04)(0)(0)
Learning;Belonging0.14320.22030.1662
p-value(0.02)(3e-04)(2e-04)
Learning;Belonging_Final0.1250.19710.1494
p-value(0.0424)(0.0013)(9e-04)
Software;Happiness0.16420.15230.1123
p-value(0.0075)(0.0132)(0.0154)
Software;Depression-0.1636-0.1296-0.0961
p-value(0.0077)(0.0353)(0.0361)
Software;Belonging0.11390.13560.1001
p-value(0.0647)(0.0276)(0.0253)
Software;Belonging_Final0.09760.13280.0985
p-value(0.1137)(0.031)(0.0294)
Happiness;Depression-0.5829-0.5407-0.4228
p-value(0)(0)(0)
Happiness;Belonging0.28710.33210.2409
p-value(0)(0)(0)
Happiness;Belonging_Final0.26330.29750.2184
p-value(0)(0)(0)
Depression;Belonging-0.3294-0.3248-0.233
p-value(0)(0)(0)
Depression;Belonging_Final-0.2829-0.2823-0.2045
p-value(0)(0)(0)
Belonging;Belonging_Final0.9530.94570.8488
p-value(0)(0)(0)



Parameters (Session):
par1 = pearson ;
Parameters (R input):
par1 = pearson ;
R code (references can be found in the software module):
panel.tau <- function(x, y, digits=2, prefix='', cex.cor)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
rr <- cor.test(x, y, method=par1)
r <- round(rr$p.value,2)
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep='')
if(missing(cex.cor)) cex <- 0.5/strwidth(txt)
text(0.5, 0.5, txt, cex = cex)
}
panel.hist <- function(x, ...)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...)
}
bitmap(file='test1.png')
pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main)
dev.off()
load(file='createtable')
n <- length(y[,1])
n
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Correlations for all pairs of data series (method=',par1,')',sep=''),n+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ',header=TRUE)
for (i in 1:n) {
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
}
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
for (j in 1:n) {
r <- cor.test(y[i,],y[j,],method=par1)
a<-table.element(a,round(r$estimate,3))
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Correlations for all pairs of data series with p-values',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'pair',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
cor.test(y[1,],y[2,],method=par1)
for (i in 1:(n-1))
{
for (j in (i+1):n)
{
a<-table.row.start(a)
dum <- paste(dimnames(t(x))[[2]][i],';',dimnames(t(x))[[2]][j],sep='')
a<-table.element(a,dum,header=TRUE)
rp <- cor.test(y[i,],y[j,],method='pearson')
a<-table.element(a,round(rp$estimate,4))
rs <- cor.test(y[i,],y[j,],method='spearman')
a<-table.element(a,round(rs$estimate,4))
rk <- cor.test(y[i,],y[j,],method='kendall')
a<-table.element(a,round(rk$estimate,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=T)
a<-table.element(a,paste('(',round(rp$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rs$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rk$p.value,4),')',sep=''))
a<-table.row.end(a)
}
}
a<-table.end(a)
table.save(a,file='mytable1.tab')