Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_One Factor ANOVA.wasp
Title produced by softwareOne-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)
Date of computationMon, 05 Nov 2012 10:47:42 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Nov/05/t13521304765jw5fyu9pus67tx.htm/, Retrieved Thu, 12 Sep 2024 15:39:50 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=186123, Retrieved Thu, 12 Sep 2024 15:39:50 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact182
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Chi Square Measure of Association- Free Statistics Software (Calculator)] [One Way ANOVA wit...] [2009-11-29 13:09:19] [98fd0e87c3eb04e0cc2efde01dbafab6]
-   PD  [Chi Square Measure of Association- Free Statistics Software (Calculator)] [One Way ANOVA for...] [2009-12-01 13:05:10] [3fdd735c61ad38cbc9b3393dc997cdb7]
- R P     [Chi Square Measure of Association- Free Statistics Software (Calculator)] [CARE date with Tu...] [2009-12-01 18:33:48] [98fd0e87c3eb04e0cc2efde01dbafab6]
-   P       [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [CARE Data with Tu...] [2010-11-23 12:09:38] [3fdd735c61ad38cbc9b3393dc997cdb7]
- RM          [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [IQ and Mothers Age] [2011-11-21 16:34:08] [98fd0e87c3eb04e0cc2efde01dbafab6]
- R  D          [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [3a] [2012-11-05 15:24:26] [fe842592b2d6e0f13a4ea14054c50353]
-    D              [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [3a] [2012-11-05 15:47:42] [ea99e61d761e3afc17f8bda1c0d13b86] [Current]
-    D                [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [3a] [2012-11-05 18:40:11] [fe842592b2d6e0f13a4ea14054c50353]
Feedback Forum

Post a new message
Dataseries X:
36	1
36	1
56	2
48	2
32	2
44	1
39	2
34	2
41	3
50	3
39	1
62	3
52	2
37	3
50	2
41	1
55	2
41	2
56	3
39	2
52	1
46	2
44	2
48	2
41	2
50	3
50	3
44	2
52	1
54	2
44	2
52	3
37	2
52	3
50	3
36	1
50	1
52	3
55	3
31	2
36	1
49	1
42	1
37	2
41	2
30	1
52	1
30	3
41	2
44	1
66	2
48	3
43	2
57	2
46	1
54	3
48	3
48	2
52	1
62	1
58	3
58	2
62	2
48	2
46	2
34	1
66	2
52	3
55	2
55	1
57	3
56	1
55	2
56	3
54	1
55	3
46	2
52	1
32	2
44	1
46	2
59	2
46	3
46	3
54	3
66	3
56	2
59	2
57	2
52	3
48	1
44	1
41	7
50	1
48	3
48	2
59	2
34	2
46	2
54	2
55	2
54	3
59	2
44	2
54	3
52	3
66	3
44	2
57	2
39	1
60	3
45	2
41	2
50	2
39	2
43	2
48	1
37	2
58	2
46	1
43	1
44	2
34	3
30	1
50	3
39	1
37	2
55	2
48	3
41	2
39	1
36	3
43	2
50	3
55	2
43	2
60	3
48	2
30	3
43	2
39	1
52	2
39	1
39	1
56	1
59	1
46	2
57	2
50	2
54	1
50	3
60	3
59	3
41	2
48	1
59	2
60	3
56	2
56	2
51	1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'George Udny Yule' @ yule.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'George Udny Yule' @ yule.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=186123&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ yule.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=186123&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=186123&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'George Udny Yule' @ yule.wessa.net







ANOVA Model
MC30VRB ~ MWARM30
means45.3572.6435.806-4.357

\begin{tabular}{lllllllll}
\hline
ANOVA Model \tabularnewline
MC30VRB  ~  MWARM30 \tabularnewline
means & 45.357 & 2.643 & 5.806 & -4.357 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=186123&T=1

[TABLE]
[ROW][C]ANOVA Model[/C][/ROW]
[ROW][C]MC30VRB  ~  MWARM30[/C][/ROW]
[ROW][C]means[/C][C]45.357[/C][C]2.643[/C][C]5.806[/C][C]-4.357[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=186123&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=186123&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Model
MC30VRB ~ MWARM30
means45.3572.6435.806-4.357







ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
MWARM303770.472256.8243.7630.012
Residuals15610647.50368.253

\begin{tabular}{lllllllll}
\hline
ANOVA Statistics \tabularnewline
  & Df & Sum Sq & Mean Sq & F value & Pr(>F) \tabularnewline
MWARM30 & 3 & 770.472 & 256.824 & 3.763 & 0.012 \tabularnewline
Residuals & 156 & 10647.503 & 68.253 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=186123&T=2

[TABLE]
[ROW][C]ANOVA Statistics[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]Sum Sq[/C][C]Mean Sq[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]MWARM30[/C][C]3[/C][C]770.472[/C][C]256.824[/C][C]3.763[/C][C]0.012[/C][/ROW]
[ROW][C]Residuals[/C][C]156[/C][C]10647.503[/C][C]68.253[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=186123&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=186123&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
MWARM303770.472256.8243.7630.012
Residuals15610647.50368.253







Tukey Honest Significant Difference Comparisons
difflwruprp adj
2-12.643-1.5026.7880.351
3-15.8061.15110.460.008
7-1-4.357-26.06617.3520.954
3-23.163-0.9517.2770.194
7-2-7-28.59914.5990.834
7-3-10.163-31.86611.540.618

\begin{tabular}{lllllllll}
\hline
Tukey Honest Significant Difference Comparisons \tabularnewline
  & diff & lwr & upr & p adj \tabularnewline
2-1 & 2.643 & -1.502 & 6.788 & 0.351 \tabularnewline
3-1 & 5.806 & 1.151 & 10.46 & 0.008 \tabularnewline
7-1 & -4.357 & -26.066 & 17.352 & 0.954 \tabularnewline
3-2 & 3.163 & -0.951 & 7.277 & 0.194 \tabularnewline
7-2 & -7 & -28.599 & 14.599 & 0.834 \tabularnewline
7-3 & -10.163 & -31.866 & 11.54 & 0.618 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=186123&T=3

[TABLE]
[ROW][C]Tukey Honest Significant Difference Comparisons[/C][/ROW]
[ROW][C] [/C][C]diff[/C][C]lwr[/C][C]upr[/C][C]p adj[/C][/ROW]
[ROW][C]2-1[/C][C]2.643[/C][C]-1.502[/C][C]6.788[/C][C]0.351[/C][/ROW]
[ROW][C]3-1[/C][C]5.806[/C][C]1.151[/C][C]10.46[/C][C]0.008[/C][/ROW]
[ROW][C]7-1[/C][C]-4.357[/C][C]-26.066[/C][C]17.352[/C][C]0.954[/C][/ROW]
[ROW][C]3-2[/C][C]3.163[/C][C]-0.951[/C][C]7.277[/C][C]0.194[/C][/ROW]
[ROW][C]7-2[/C][C]-7[/C][C]-28.599[/C][C]14.599[/C][C]0.834[/C][/ROW]
[ROW][C]7-3[/C][C]-10.163[/C][C]-31.866[/C][C]11.54[/C][C]0.618[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=186123&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=186123&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Tukey Honest Significant Difference Comparisons
difflwruprp adj
2-12.643-1.5026.7880.351
3-15.8061.15110.460.008
7-1-4.357-26.06617.3520.954
3-23.163-0.9517.2770.194
7-2-7-28.59914.5990.834
7-3-10.163-31.86611.540.618







Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group31.0810.359
156

\begin{tabular}{lllllllll}
\hline
Levenes Test for Homogeneity of Variance \tabularnewline
  & Df & F value & Pr(>F) \tabularnewline
Group & 3 & 1.081 & 0.359 \tabularnewline
  & 156 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=186123&T=4

[TABLE]
[ROW][C]Levenes Test for Homogeneity of Variance[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]Group[/C][C]3[/C][C]1.081[/C][C]0.359[/C][/ROW]
[ROW][C] [/C][C]156[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=186123&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=186123&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group31.0810.359
156



Parameters (Session):
par1 = 1 ; par2 = 2 ; par3 = TRUE ;
Parameters (R input):
par1 = 1 ; par2 = 2 ; par3 = TRUE ;
R code (references can be found in the software module):
cat1 <- as.numeric(par1) #
cat2<- as.numeric(par2) #
intercept<-as.logical(par3)
x <- t(x)
x1<-as.numeric(x[,cat1])
f1<-as.character(x[,cat2])
xdf<-data.frame(x1,f1)
(V1<-dimnames(y)[[1]][cat1])
(V2<-dimnames(y)[[1]][cat2])
names(xdf)<-c('Response', 'Treatment')
if(intercept == FALSE) (lmxdf<-lm(Response ~ Treatment - 1, data = xdf) ) else (lmxdf<-lm(Response ~ Treatment, data = xdf) )
(aov.xdf<-aov(lmxdf) )
(anova.xdf<-anova(lmxdf) )
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Model', length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, paste(V1, ' ~ ', V2), length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'means',,TRUE)
for(i in 1:length(lmxdf$coefficients)){
a<-table.element(a, round(lmxdf$coefficients[i], digits=3),,FALSE)
}
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Statistics', 5+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ',,TRUE)
a<-table.element(a, 'Df',,FALSE)
a<-table.element(a, 'Sum Sq',,FALSE)
a<-table.element(a, 'Mean Sq',,FALSE)
a<-table.element(a, 'F value',,FALSE)
a<-table.element(a, 'Pr(>F)',,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, V2,,TRUE)
a<-table.element(a, anova.xdf$Df[1],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'F value'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3),,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residuals',,TRUE)
a<-table.element(a, anova.xdf$Df[2],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3),,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
bitmap(file='anovaplot.png')
boxplot(Response ~ Treatment, data=xdf, xlab=V2, ylab=V1)
dev.off()
if(intercept==TRUE){
thsd<-TukeyHSD(aov.xdf)
bitmap(file='TukeyHSDPlot.png')
plot(thsd)
dev.off()
}
if(intercept==TRUE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Tukey Honest Significant Difference Comparisons', 5,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ', 1, TRUE)
for(i in 1:4){
a<-table.element(a,colnames(thsd[[1]])[i], 1, TRUE)
}
a<-table.row.end(a)
for(i in 1:length(rownames(thsd[[1]]))){
a<-table.row.start(a)
a<-table.element(a,rownames(thsd[[1]])[i], 1, TRUE)
for(j in 1:4){
a<-table.element(a,round(thsd[[1]][i,j], digits=3), 1, FALSE)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
if(intercept==FALSE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'TukeyHSD Message', 1,TRUE)
a<-table.row.end(a)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Must Include Intercept to use Tukey Test ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
library(car)
lt.lmxdf<-levene.test(lmxdf)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Levenes Test for Homogeneity of Variance', 4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
for (i in 1:3){
a<-table.element(a,names(lt.lmxdf)[i], 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Group', 1, TRUE)
for (i in 1:3){
a<-table.element(a,round(lt.lmxdf[[i]][1], digits=3), 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
a<-table.element(a,lt.lmxdf[[1]][2], 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')