Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 01 Nov 2013 07:58:37 -0400
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2013/Nov/01/t13833078059h3na14sjhbqisd.htm/, Retrieved Sun, 28 Apr 2024 22:50:02 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=221612, Retrieved Sun, 28 Apr 2024 22:50:02 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsfaucet costing brass taps
Estimated Impact87
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [Costing of faucet] [2013-11-01 11:58:37] [d41d8cd98f00b204e9800998ecf8427e] [Current]
Feedback Forum

Post a new message
Dataseries X:
913	730	2	2	0	0	1
773	730	1	1	0	0	2
992	904	1	1	3	0	2
977	904	2	2	0	0	1
691	550	1	1	2	1	2
686	460	1	1	2	1	1
632	590	1	1	2	0	1
683	670	1	1	2	1	1
731	670	1	3	2	1	1
776	715	1	1	3	1	1
820	715	1	3	3	1	1
736	612	1	1	3	1	1
827	612	1	3	3	1	1
841	746	1	1	3	1	1
556	441	1	1	2	0	1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'Sir Maurice George Kendall' @ kendall.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 8 seconds \tabularnewline
R Server & 'Sir Maurice George Kendall' @ kendall.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=221612&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]8 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Maurice George Kendall' @ kendall.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=221612&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=221612&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'Sir Maurice George Kendall' @ kendall.wessa.net







Multiple Linear Regression - Estimated Regression Equation
FOB[t] = -92.4679 + 0.552586Weight[t] + 226.917Brass[t] + 21.1741Finish[t] + 45.5608Aerator[t] + 15.5384Drain[t] + 89.8235Box[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
FOB[t] =  -92.4679 +  0.552586Weight[t] +  226.917Brass[t] +  21.1741Finish[t] +  45.5608Aerator[t] +  15.5384Drain[t] +  89.8235Box[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=221612&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]FOB[t] =  -92.4679 +  0.552586Weight[t] +  226.917Brass[t] +  21.1741Finish[t] +  45.5608Aerator[t] +  15.5384Drain[t] +  89.8235Box[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=221612&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=221612&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
FOB[t] = -92.4679 + 0.552586Weight[t] + 226.917Brass[t] + 21.1741Finish[t] + 45.5608Aerator[t] + 15.5384Drain[t] + 89.8235Box[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-92.4679130.772-0.70710.4995840.249792
Weight0.5525860.1325284.170.003123890.00156195
Brass226.91776.10732.9820.01755910.00877957
Finish21.174118.13211.1680.2765230.138262
Aerator45.560821.49062.120.06682190.033411
Drain15.538436.25760.42860.6795520.339776
Box89.823543.52762.0640.07295120.0364756

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -92.4679 & 130.772 & -0.7071 & 0.499584 & 0.249792 \tabularnewline
Weight & 0.552586 & 0.132528 & 4.17 & 0.00312389 & 0.00156195 \tabularnewline
Brass & 226.917 & 76.1073 & 2.982 & 0.0175591 & 0.00877957 \tabularnewline
Finish & 21.1741 & 18.1321 & 1.168 & 0.276523 & 0.138262 \tabularnewline
Aerator & 45.5608 & 21.4906 & 2.12 & 0.0668219 & 0.033411 \tabularnewline
Drain & 15.5384 & 36.2576 & 0.4286 & 0.679552 & 0.339776 \tabularnewline
Box & 89.8235 & 43.5276 & 2.064 & 0.0729512 & 0.0364756 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=221612&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-92.4679[/C][C]130.772[/C][C]-0.7071[/C][C]0.499584[/C][C]0.249792[/C][/ROW]
[ROW][C]Weight[/C][C]0.552586[/C][C]0.132528[/C][C]4.17[/C][C]0.00312389[/C][C]0.00156195[/C][/ROW]
[ROW][C]Brass[/C][C]226.917[/C][C]76.1073[/C][C]2.982[/C][C]0.0175591[/C][C]0.00877957[/C][/ROW]
[ROW][C]Finish[/C][C]21.1741[/C][C]18.1321[/C][C]1.168[/C][C]0.276523[/C][C]0.138262[/C][/ROW]
[ROW][C]Aerator[/C][C]45.5608[/C][C]21.4906[/C][C]2.12[/C][C]0.0668219[/C][C]0.033411[/C][/ROW]
[ROW][C]Drain[/C][C]15.5384[/C][C]36.2576[/C][C]0.4286[/C][C]0.679552[/C][C]0.339776[/C][/ROW]
[ROW][C]Box[/C][C]89.8235[/C][C]43.5276[/C][C]2.064[/C][C]0.0729512[/C][C]0.0364756[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=221612&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=221612&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-92.4679130.772-0.70710.4995840.249792
Weight0.5525860.1325284.170.003123890.00156195
Brass226.91776.10732.9820.01755910.00877957
Finish21.174118.13211.1680.2765230.138262
Aerator45.560821.49062.120.06682190.033411
Drain15.538436.25760.42860.6795520.339776
Box89.823543.52762.0640.07295120.0364756







Multiple Linear Regression - Regression Statistics
Multiple R0.952638
R-squared0.90752
Adjusted R-squared0.838159
F-TEST (value)13.0841
F-TEST (DF numerator)6
F-TEST (DF denominator)8
p-value0.000941112
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation49.4265
Sum Squared Residuals19543.8

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.952638 \tabularnewline
R-squared & 0.90752 \tabularnewline
Adjusted R-squared & 0.838159 \tabularnewline
F-TEST (value) & 13.0841 \tabularnewline
F-TEST (DF numerator) & 6 \tabularnewline
F-TEST (DF denominator) & 8 \tabularnewline
p-value & 0.000941112 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 49.4265 \tabularnewline
Sum Squared Residuals & 19543.8 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=221612&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.952638[/C][/ROW]
[ROW][C]R-squared[/C][C]0.90752[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.838159[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]13.0841[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]6[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]8[/C][/ROW]
[ROW][C]p-value[/C][C]0.000941112[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]49.4265[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]19543.8[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=221612&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=221612&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.952638
R-squared0.90752
Adjusted R-squared0.838159
F-TEST (value)13.0841
F-TEST (DF numerator)6
F-TEST (DF denominator)8
p-value0.000941112
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation49.4265
Sum Squared Residuals19543.8







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1913896.92516.075
2773738.65834.3423
3992971.4920.5099
4977993.075-16.075
5691745.852-54.8523
6686606.29679.7039
7632662.594-30.5938
8683722.339-39.3391
9731764.687-33.6873
10776792.766-16.7663
11820835.115-15.1145
12736735.850.150081
13827778.19848.8018
14841809.89631.1036
15556580.259-24.2585

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 913 & 896.925 & 16.075 \tabularnewline
2 & 773 & 738.658 & 34.3423 \tabularnewline
3 & 992 & 971.49 & 20.5099 \tabularnewline
4 & 977 & 993.075 & -16.075 \tabularnewline
5 & 691 & 745.852 & -54.8523 \tabularnewline
6 & 686 & 606.296 & 79.7039 \tabularnewline
7 & 632 & 662.594 & -30.5938 \tabularnewline
8 & 683 & 722.339 & -39.3391 \tabularnewline
9 & 731 & 764.687 & -33.6873 \tabularnewline
10 & 776 & 792.766 & -16.7663 \tabularnewline
11 & 820 & 835.115 & -15.1145 \tabularnewline
12 & 736 & 735.85 & 0.150081 \tabularnewline
13 & 827 & 778.198 & 48.8018 \tabularnewline
14 & 841 & 809.896 & 31.1036 \tabularnewline
15 & 556 & 580.259 & -24.2585 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=221612&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]913[/C][C]896.925[/C][C]16.075[/C][/ROW]
[ROW][C]2[/C][C]773[/C][C]738.658[/C][C]34.3423[/C][/ROW]
[ROW][C]3[/C][C]992[/C][C]971.49[/C][C]20.5099[/C][/ROW]
[ROW][C]4[/C][C]977[/C][C]993.075[/C][C]-16.075[/C][/ROW]
[ROW][C]5[/C][C]691[/C][C]745.852[/C][C]-54.8523[/C][/ROW]
[ROW][C]6[/C][C]686[/C][C]606.296[/C][C]79.7039[/C][/ROW]
[ROW][C]7[/C][C]632[/C][C]662.594[/C][C]-30.5938[/C][/ROW]
[ROW][C]8[/C][C]683[/C][C]722.339[/C][C]-39.3391[/C][/ROW]
[ROW][C]9[/C][C]731[/C][C]764.687[/C][C]-33.6873[/C][/ROW]
[ROW][C]10[/C][C]776[/C][C]792.766[/C][C]-16.7663[/C][/ROW]
[ROW][C]11[/C][C]820[/C][C]835.115[/C][C]-15.1145[/C][/ROW]
[ROW][C]12[/C][C]736[/C][C]735.85[/C][C]0.150081[/C][/ROW]
[ROW][C]13[/C][C]827[/C][C]778.198[/C][C]48.8018[/C][/ROW]
[ROW][C]14[/C][C]841[/C][C]809.896[/C][C]31.1036[/C][/ROW]
[ROW][C]15[/C][C]556[/C][C]580.259[/C][C]-24.2585[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=221612&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=221612&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1913896.92516.075
2773738.65834.3423
3992971.4920.5099
4977993.075-16.075
5691745.852-54.8523
6686606.29679.7039
7632662.594-30.5938
8683722.339-39.3391
9731764.687-33.6873
10776792.766-16.7663
11820835.115-15.1145
12736735.850.150081
13827778.19848.8018
14841809.89631.1036
15556580.259-24.2585



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
par3 <- 'No Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- '1'
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,signif(mysum$coefficients[i,1],6))
a<-table.element(a, signif(mysum$coefficients[i,2],6))
a<-table.element(a, signif(mysum$coefficients[i,3],4))
a<-table.element(a, signif(mysum$coefficients[i,4],6))
a<-table.element(a, signif(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, signif(sqrt(mysum$r.squared),6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, signif(mysum$r.squared,6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, signif(mysum$adj.r.squared,6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[1],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, signif(mysum$sigma,6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, signif(sum(myerror*myerror),6))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,signif(x[i],6))
a<-table.element(a,signif(x[i]-mysum$resid[i],6))
a<-table.element(a,signif(mysum$resid[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,signif(gqarr[mypoint-kp3+1,1],6))
a<-table.element(a,signif(gqarr[mypoint-kp3+1,2],6))
a<-table.element(a,signif(gqarr[mypoint-kp3+1,3],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,signif(numsignificant1/numgqtests,6))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}